
HP 75000 Series C
Where to Find it - Online and Printed Information:

System installation (hardware/software)............ VXIbus Configuration Guide*
HP VIC (VXI installation software)*
Getting Started with VXI Guide**

Module configuration and wiring....................... This Manual
SCPI programming............................................. This Manual
SCPI example programs..................................... This Manual, Driver Disk
SCPI command reference .................................. This Manual

VXIplug&play programming ............................ VXIplug&play Online Help
VXIplug&play example programs ..................... VXIplug&play Online Help
VXIplug&play function reference ..................... VXIplug&play Online Help
Soft Front Panel information.............................. VXIplug&play Online Help

VISA language information ...............................HP VISA User’s Guide

HP VEE programming information ................... HP VEE User’s Manual

*Supplied with HP Command Modules , Embedded Controllers, and VXLink

** Supplied with HP VXI Mainframes and on WEB at www.tmo.hp.com then search for “getting started with 
vxi”. Search result will be “Getting Started With VXI Guide”, click on this to download .PDF file.

HP E1422A Remote Channel
Multi-function DAC Module with
HP E1529A 32ch Remote Strain Conditioning Unit and 
HP E1539A Remote Channel Signal Conditioning Plug-on

User’s and SCPI Programming Manual
������
���
Manual Part Number: E1422-90003

Printed in U.S.A. E0400





 

 

ercial 
14 (Jun 
(Jun
r
involved
HEWLETT-PACKARD WARRANTY STATEMENT

HP PRODUCT: HP E1422A Remote Channel Multi-function DAC Module with DURATION OF WARRANTY:  3 years
 HP E1529A Remote Strain Conditioning Module and DURATION OF WARRANTY:  3 years

HP E1539A Remote Channel Signal Conditioning Plug-on and
all other applicable Signal Conditioning Plug-ons DURATION OF WARRANTY:  3 years

1. HP warrants HP hardware, accessories and supplies against defects in materials and workmanship for the period specified above.  If 
HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace products which prove to be 
defective.  Replacement products may be either new or like-new.

2. HP warrants that HP software will not fail to execute its programming instructions, for the period specified above, due to defects in 
material and workmanship when properly installed and used.  If HP receives notice of such defects during the warranty period, HP will 
replace software media which does not execute its programming instructions due to such defects.

3. HP does not warrant that the operation of HP products will be interrupted or error free.  If HP is unable, within a reasonable time, to 
repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt return 
of the product.

4. HP products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.

5. The warranty period begins on the date of delivery or on the date of installation if installed by HP.  If customer schedules or delays HP 
installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts 
or supplies not supplied by HP, (c) unauthorized modification or misuse, (d) operation outside of the published environmental 
specifications for the product, or (e) improper site preparation or maintenance.

7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER 
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND HP SPECIFICALLY 
DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, AND 
FITNESS FOR A PARTICULAR PURPOSE.

8. HP will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product 
that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court 
of competent jurisdiction to have been directly caused by a defective HP product.

9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S 
SOLE AND EXLUSIVE REMEDIES.  EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE 
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND:  THE WARRANTY TERMS CONTAINED IN THIS 
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "comm
computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-70
1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19  
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided fo such 
Software and Documentation by the applicable FAR or DFARS clause or the HP standard software agreement for the product .

HP E1422A Remote Channel DAC Unit User's Manual and SCPI Programming Guide
Edition 4

Copyright © 1998-2000 Hewlett-Packard Company. All Rights Reserved.
  3



tu
i

earth 

oval of 
i

less

en 
duct unti

id and 

parts 
 s

y 

ages to
Safety Symbols

Alternating current (AC)Instruction manual symbol affixed to 
product. Indicates that the user must refer to 
the manual for specific WARNING or 
CAUTION information to avoid personal 
injury or damage to the product.

Indicates the field wiring terminal that must 
be connected to earth ground before 
operating the equipmentÅprotects against 
electrical shock in case of fault.

Direct current (DC). 

Indicates hazardous voltages.

Frame or chassis ground terminal—
typically connects to the equipment's metal 

WARNING
Calls attention to a procedure, practice, or 
condition that could cause bodily injury or 
death.

CAUTION
Calls attention to a procedure, practice, or 
condition that could possibly cause damage to 
equipment or permanent loss of data.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to 
comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacre, and 
intended use of the product. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requrements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety 
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable. 

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT 
use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the rem
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even wth the 
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal un you 
are qualified to do so. 

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have be
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the prol 
safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Office 
for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first a
resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute 
or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service Office forervice 
and repair to ensure that safety features are maintained. 

Operating Location: Sheltered location where air temperature and humidity are controlled within this product’s specifications and the 
product is protected against direct exposure to climatic conditions such as direct sunlight, wind, rain, snow, sleet, and icing, water spray 
or splash, hoarfrost or dew. (Typically, indoor.) Pollution environment for which this product may be operated is IEC 664 Pollution degree 
2.

CLEANING THE FRONT PANEL AND TOP/BOTTOM SHIELDS:  Clean the outside surfaces of this module with a cloth slightl
dampened with water.  Do not attempt to clean the interior of this module.

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition 
number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement p 
correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of the 
Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation history page. 

Edition 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .May 1999

Edition 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . July 1999

Edition 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .September 1999

Edition 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . February 2000

or
4   



  5

Declaration of Conformity

according to ISO/IEC Guide 22 and EN 45014

Manufacturer’s Name: Hewlett-Packard Company
Loveland Manufacturing Center

Manufacturer’s Address: 815 14th Street S.W.
Loveland, Colorado 80537

declares, that the product:

Product Names: Remote Channel Multi-function DAC Module
Remote Channel Signal Conditioning Plug-on
32-ch Remote Strain Conditioning Unit

Model Numbers: HP E1422A
HP E1539A
HP E1529A

Product Options: All options and all other applicable Signal Conditioning Plug-ons

conforms to the following Product Specifications:

Safety: IEC 1010-1 (1990) Incl. Amend 2 (1996)/EN61010-1 (1993)
CSA C22.2 #1010.1 (1992)
UL 3111-1 (1994)

EMC: CISPR 11:1990/EN55011 (1991): Group 1 Class A
EN61000-3-2:1995 Class A
EN61000-3-3:1995
EN50082-1:1992

IEC 1000-4-2:1995: 4kVCD, 8kVAD
IEC 1000-4-3:1995: 3 V/m
IEC 1000-4-4:1995: 1kV Power Line 0.5kV Signal Lines
ENV50141:1993/prEN50082-1 (1995): 3 Vrms
EN 61000-4-5:1995 1kV CM, 0.5kV DM
EN61000-4-8:1993/prEN50082-1 (1995): 3 A/M
EN61000-4-11:1994/prEN50082-1 (1995): 30%, 10mS 60%, 100mS

Supplementary Information: The product herewith complies with the requirements of the Low Voltage Directive 
73/23/EEC and the EMC Directive 89/336/EEC (inclusive 93/68/EEC) and carries the "CE" mark accordingly.

May 3, 1999 Jim White, QA Manager

For Compliance Information ONLY, contact:

Australia Contact: Product Regulations Manager, Hewlett-Packard Australia Ltd., 31-41 Joseph Street, Blackburn, 
                                Victoria 3130, Australia

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department HQ-TRE,
                                  Standards Europe, Herrenberger Straβe 130, D-71034 Boblingen (FAX: +49-7031-14-3143)

USA Contact:  Product Regulations Manager, Hewlett-Packard Company, P.O. Box 301, Mail Stop BU212, Loveland, CO
                          80537



6   

Notes:



NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

fold here

Please fold and tape for mailing

Reader Comment Sheet
HP E1422A Remote Channel Multifunction DAC Module User’s Manual

Edition 4
You can help us improve our manuals by sharing your comments and suggestions. In appreciation of your time, we will 
enter you in a quarterly drawing for a Hewlett-Packard Palmtop Personal Computer (U.S. government employees 
are not eligible for the drawing).

Your Name

Company Name

Job Title

Address

City, State/Province

Country

Zip/Postal Code

Telephone Number with Area Code

Please list the system controller, operating system, programming language, and plug-in modules you are using.

BUSINESS REPLY MAIL
  FIRST CLASS      PERMIT NO. 37      LOVELAND, CO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD COMPANY       
Measurement Systems Division          
Learning Products Department      
P.O. Box 301    
Loveland, CO  80539-9984       

fold here
Please pencil-in one circle for each statement below:                Disagree            Agree

• The documentation is well organized. O O O O O
• Instructions are easy to understand. O O O O O
• The documentation is clearly written. O O O O O
• Examples are clear and useful. O O O O O
• Illustrations are clear and helpful. O O O O O
• The documentation meets my overall expectations. O O O O O

Please write any comments or suggestions below–be specific.

cu
t a

lo
ng

 th
is

 li
ne





Contents
HP E1422A Remote Channel Multifunction DAC Module (Edition 3)

HEWLETT-PACKARD WARRANTY STATEMENT. . . . . . . . . . . . . . . . . . . . .  3

Safety Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

WARNINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Declaration of Conformity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Reader Comment Sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Chapter 1
Getting Started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

About this Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

 Configuring the HP E1422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Setting the Logical Address Switch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Installing Signal Conditioning Plug-ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Disabling the Input Protect Feature (optional) . . . . . . . . . . . . . . . . . . . . . . .  27
Disabling Flash Memory Access (optional)  . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Installing the Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Instrument Drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

About Example Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Verifying a Successful Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Chapter 2
Field Wiring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Planning Your Wiring Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
SCP Positions and Channel Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Sense SCPs and Output SCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Planning for Thermocouple Measurements  . . . . . . . . . . . . . . . . . . . . . . . . .  36

Faceplate Connector Pin-Signal Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Optional Terminal and Connector Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
The SCPs and Terminal Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Terminal Module Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
The RJ-45 Connector Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Spring Terminal Module Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Screw Terminal Module Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Reference Temperature Sensing with the HP E1422 . . . . . . . . . . . . . . . . . . . . . .  42

Preferred Measurement Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Contents   9



Connecting the On-board Thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Wiring and Attaching the Terminal Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

Removing the HP E1422 Terminal Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

Attaching and Removing the HP E1422 RJ-45 Module. . . . . . . . . . . . . . . . . . . .  51

Adding Components to the Terminal Module  . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

Spring and Screw Terminal Module Wiring Maps  . . . . . . . . . . . . . . . . . . . . . . .  53

Chapter 3
Programming the HP E1422A & HP E1529A for Remote Strain Measurement .  55

About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

Instrument Setup for Remote Strain Measurements . . . . . . . . . . . . . . . . . . . . . .  56
Preparing the HP E1422A for Installation  . . . . . . . . . . . . . . . . . . . . . . . . . .  56
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56
Preparing the HP E1529A for Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Installing User Selected 1/4 Bridge Resistors (optional) . . . . . . . . . . . . . . . .  57
Connecting HP E1529As to the HP E1422A  . . . . . . . . . . . . . . . . . . . . . . . . .  60
Two Interconnect Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Connecting Excitation Supplies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

Connecting the HP E1529A to Strain Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66
Channel Connector Pin-to-Signal Relationship  . . . . . . . . . . . . . . . . . . . . . .  66

HP E1529A Bridge Configurations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

Connecting to the HP E1529A’s Dynamic Strain Ports . . . . . . . . . . . . . . . . . . . .  70
Extending the Dynamic Strain Connection . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Dynamic Strain Port Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

Remote Strain Channel Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
Runtime Remote Scan Verification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

Programming for Remote Strain Measurement . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Description of Strain Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Verifying Correct Bridge Completion (Shunt Cal)  . . . . . . . . . . . . . . . . . . . . . . .  87

Built-in Strain Conversion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

Chapter 4
Programming the HP E1422A for
Data Acquisition and Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

Overview of the HP E1422A Multifunction DAC Module. . . . . . . . . . . . . . . . . .  92
Multifunction DAC?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Operational Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
Detailed Instrument Operation Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

 Executing the Programming Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Power-on and *RST Default Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

Setting up Analog Input and Output Channels  . . . . . . . . . . . . . . . . . . . . . . . . .  103
10   Contents



Configuring Programmable Analog SCP Parameters  . . . . . . . . . . . . . . . .  103
Linking Input Channels to EU Conversion . . . . . . . . . . . . . . . . . . . . . . . . .  105
 Linking Output Channels to Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

Setting up Digital Input and Output Channels . . . . . . . . . . . . . . . . . . . . . . . . . .  113
Setting up Digital Inputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
Setting up Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

Performing Channel Calibration (Important!). . . . . . . . . . . . . . . . . . . . . . . . . .  117
Calibrationg the HP E1422A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117
Calibrating Remote Signal Conditioning Units . . . . . . . . . . . . . . . . . . . . . .  118

Defining an Analog Input Scan List (ROUT:SEQ:DEF) . . . . . . . . . . . . . . . . . .  119

Defining C Language Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Global variable definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Algorithm definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Pre-setting Algorithm Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

Defining Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Specifying the
 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Selecting the
 FIFO Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Setting up the Trigger System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Arm and Trigger Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Programming the Trigger Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Setting the Trigger Counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Sending Trigger Signals to 
Other Instruments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

INITiating the Module/Starting Scanning and Algorithms. . . . . . . . . . . . . . . .  126
Starting Scanning and/or Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
The Operating Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

Reading Running Algorithm Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

Modifying Running Algorithm Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
Updating the Algorithm Variables and Coefficients . . . . . . . . . . . . . . . . . .  132
Enabling and Disabling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
Setting Algorithm Execution Frequency  . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

Example SCPI Command Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

Example VXIplug&play Driver Function Sequence  . . . . . . . . . . . . . . . . . . . . .  135

Using the Status System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
Enabling Events to be Reported in the Status Byte  . . . . . . . . . . . . . . . . . .  140
Reading the Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
Clearing the Enable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
The Status Byte Group’s Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Reading Status Groups Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

HP E1422 Background Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

Updating the Status System and VXIbus Interrupts . . . . . . . . . . . . . . . . . . . . .  143

Creating and Loading Custom EU Conversion Tables . . . . . . . . . . . . . . . . . . .  145
Contents   11



Compensating for System Offsets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Special Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

Detecting Open Transducers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

More On Auto Ranging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Settling Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152
Checking for Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152
Fixing the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

Chapter 5
Creating and Running Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

Overview of the Algorithm Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156
Example Language Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

The Algorithm Execution Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158
The Main Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158
How Your Algorithms Fit In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

Accessing the E1422’s Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
Accessing I/O Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160
Accessing Remote Scan Status Variables . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
Runtime Remote Scan Verification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
Defining and Accessing Global Variables  . . . . . . . . . . . . . . . . . . . . . . . . . .  163
Determining
First Execution (First_loop)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Initializing Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
Sending Data to the CVT and FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
Setting a VXIbus Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166
Determining Your Algorithm’s Identity (ALG_NUM) . . . . . . . . . . . . . . . .  166
Calling User Defined Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166

Operating Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Overall Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Algorithm Execution Order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168

Defining Algorithms (ALG:DEF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170
ALG:DEFINE in the Programming Sequence  . . . . . . . . . . . . . . . . . . . . . .  170
ALG:DEFINE’s Three Data Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170
Changing an Algorithm While
it’s Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171

A Very Simple First Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
Writing the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
Running the Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174

Modifying an Example PID Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
PIDA with digital On-Off Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174

Algorithm to Algorithm Communication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175
Communication Using Channel Identifiers . . . . . . . . . . . . . . . . . . . . . . . . .  175
Communication Using Global Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . .  176
12   Contents



Non-Control Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Process Monitoring Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178

Implementing Setpoint Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178

Algorithm Language Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Standard Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Special HP E1422 Reserved Keywords  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181
Special Identifiers for Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
Special Identifiers for Remote Scan Status  . . . . . . . . . . . . . . . . . . . . . . . . .  182
Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
Intrinsic Functions and Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Program Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Bitfield Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185

Language Syntax Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186

Program Structure and Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190
Declaring Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190
Assigning Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
The Operations Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Conditional Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192
Comment Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193
Overall Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194

Chapter 6
HP E1422 Command Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195

Using This Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195
 Overall Command Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195
Command Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

Common Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
SCPI Command Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
Linking Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206
Data  Types   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206

SCPI Command Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

ABORt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209

ALGorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210
ALGorithm[:EXPLicit]:ARRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210
ALGorithm[:EXPLicit]:ARRay? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211
ALGorithm[:EXPLicit]:DEFine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212
ALGorithm[:EXPLicit]:SCALar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216
ALGorithm[:EXPLicit]:SCALar?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
ALGorithm[:EXPLicit]:SCAN:RATio  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
ALGorithm[:EXPLicit]:SCAN:RATio?  . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
ALGorithm[:EXPLicit]:SIZE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
ALGorithm[:EXPLicit][:STATe] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
ALGorithm[:EXPLicit][:STATe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
ALGorithm[:EXPLicit]:TIME? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
Contents   13



ALGorithm:FUNCtion:DEFine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221
ALGorithm:OUTPut:DELay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
ALGorithm:OUTPut:DELay?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223
ALGorithm:UPDate[:IMMediate] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
ALGorithm:UPDate:CHANnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225
ALGorithm:UPDate:WINDow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226
ALGOrithm:UPDate:WINDow?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
ARM[:IMMediate] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
ARM:SOURce  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229
ARM:SOURce?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230

CALibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231
CALibration:CONFigure:RESistance   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232
CALibration:CONFigure:VOLTage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
CALibration:REMote?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234
CALibration:REMote:DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
CALibration:REMote:DATA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
CALibration:REMote:STORe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
CALibration:SETup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
CALibration:SETup?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237
CALibration:STORe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237
CALibration:TARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
CALibration:TARE:RESet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
CALibration:TARE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
CALibration:VALue:RESistance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
CALibration:VALue:VOLTage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
CALibration:ZERO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243

DIAGnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245
DIAGnostic:CALibration:SETup[:MODE]  . . . . . . . . . . . . . . . . . . . . . . . .  245
DIAGnostic:CALibration:SETup[:MODE]?  . . . . . . . . . . . . . . . . . . . . . . .  246
DIAGnostic:CALibration:TARE[:OTDetect]:MODE . . . . . . . . . . . . . . . .  246
DIAGnostic:CALibration:TARE[:OTDetect]:MODE? . . . . . . . . . . . . . . .  247
DIAGnostic:CHECksum? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
DIAGnostic:CONNect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248
DIAGnostic:CUSTom:MXB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249
DIAGnostic:CUSTom:MXB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249
DIAGnostic:CUSTom:PIECewise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
DIAGnostic:CUSTom:REFerence:TEMPerature  . . . . . . . . . . . . . . . . . . .  251
DIAGnostic:IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
DIAGnostic:IEEE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
DIAGnostic:INTerrupt[:LINe] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
DIAGnostic:INTerrupt[:LINe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
DIAGnostic:OTDetect[:STATe] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
DIAGnostic:OTDetect[:STATe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253
DIAGnostic:QUERy:SCPREAD?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
DIAGnostic:REMote:USER:DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254
DIAGnostic:REMote:USER:DATA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
14   Contents



DIAGnostic:TEST:REMote:NUMber? . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
DIAGnostic:TEST:REMote:SELFtest? . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256
DIAGnostic:VERSion?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258

FETCh?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259

FORMat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
FORMat[:DATA] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
FORMat[:DATA]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263

INITiate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264
INITiate[:IMMediate]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264

INPut  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
INPut:FILTer[:LPASs]:FREQuency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
INPut:FILTer[:LPASs]:FREQuency? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266
INPut:FILTer[:LPASs][:STATe] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266
INPut:FILTer[:LPASs][:STATe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267
INPut:GAIN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268
INPut:GAIN?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268
INPut:LOW  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
INPut:LOW?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270
INPut:POLarity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270
INPut:POLarity?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271

MEASure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272
MEASure:VOLTage:EXCitation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272
MEASure:VOLTage:UNSTrained? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  274

MEMory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276
MEMory:VME:ADDRess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276
MEMory:VME:ADDRess? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277
MEMory:VME:SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277
MEMory:VME:SIZE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278
MEMory:VME:STATe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278
MEMory:VME:STATe?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279

OUTPut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280
OUTPut:CURRent:AMPLitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280
OUTPut:CURRent:AMPLitude? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
OUTPut:CURRent[:STATe] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
OUTPut:CURRent[:STATe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
OUTPut:POLarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283
OUTPut:POLarity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283
OUTPut:SHUNt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
OUTPut:SHUNt? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
OUTPut:SHUNt:SOURce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
OUTPut:SHUNt:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  286
OUTPut:TTLTrg:SOURce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  286
OUTPut:TTLTrg:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
OUTPut:TTLTrg<n>[:STATe]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
OUTPut:TTLTrg<n>[:STATe]?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
OUTPut:TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  288
Contents   15



OUTPut:TYPE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
OUTPut:VOLTage:AMPLitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
OUTPut:VOLTage:AMPLitude? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290

ROUTe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
ROUTe:SEQuence:DEFine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
ROUTe:SEQuence:DEFine? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293
ROUTe:SEQuence:POINts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  294

  SAMPle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296
SAMPle:TIMer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296
SAMPle:TIMer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296

[SENSe] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  298
[SENSe:]CHANnel:SETTling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299
[SENSe:]CHANnel:SETTling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300
[SENSe:]DATA:CVTable?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300
[SENSe:]DATA:CVTable:RESet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
[SENSe:]DATA:FIFO[:ALL]?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
[SENSe:]DATA:FIFO:COUNt? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
[SENSe:]DATA:FIFO:COUNt:HALF? . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
[SENSe:]DATA:FIFO:HALF? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
[SENSe:]DATA:FIFO:MODE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304
[SENSe:]DATA:FIFO:MODE?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
[SENSe:]DATA:FIFO:PART?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
[SENSe:]DATA:FIFO:RESet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
[SENSe:]FREQuency:APERture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
[SENSe:]FREQuency:APERture?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
[SENSe:]FUNCtion:CONDition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
[SENSe:]FUNCtion:CUSTom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308
[SENSe:]FUNCtion:CUSTom:REFerence . . . . . . . . . . . . . . . . . . . . . . . . . .  309
[SENSe:]FUNCtion:CUSTom:TCouple . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310
[SENSe:]FUNCtion:FREQuency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311
[SENSe:]FUNCtion:RESistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312
[SENSe:]FUNCtion:STRain:FBENding  . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain:FBPoisson . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain:FPOisson  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain:HBENding  . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain:HPOisson . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain[:QUARter] . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain:Q120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain:Q350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:STRain:USER  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313
[SENSe:]FUNCtion:TEMPerature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
[SENSe:]FUNCtion:TOTalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
[SENSe:]FUNCtion:VOLTage[:DC]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
[SENSe:]REFerence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  318
[SENSe:]REFerence:CHANnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320
[SENSe:]REFerence:TEMPerature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320
[SENSe:]STRain:BRIDge[:TYPE] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  321
16   Contents



[SENSe:]STRain:BRIDge:[TYPE]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322
[SENSe:]STRain:CONNect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322
[SENSe:]STRain:CONNect? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  323
[SENSe:]STRain:EXCitation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  323
[SENSe:]STRain:EXCitation?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324
[SENSe:]STRain:EXCitation:STATe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324
[SENSe:]STRain:EXCitation:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
[SENSe:]STRain:GFACtor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
[SENSe:]STRain:GFACtor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326
[SENSe:]STRain:POISson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326
[SENSe:]STRain:POISson? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327
[SENSe:]STRain:UNSTrained  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  327
[SENSe:]STRain:UNSTrained?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328
[SENSe:]TOTalize:RESet:MODE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
[SENSe:]TOTalize:RESet:MODE?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329

SOURce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  330
SOURce:FM[:STATe] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  330
SOURce:FM:STATe?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331
SOURce:FUNCtion[:SHAPe]:CONDition . . . . . . . . . . . . . . . . . . . . . . . . . .  331
SOURce:FUNCtion[:SHAPe]:PULSe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332
SOURce:FUNCtion[:SHAPe]:SQUare . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332
SOURce:PULM[:STATe]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332
SOURce:PULM:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  333
SOURce:PULSe:PERiod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  333
SOURce:PULSe:PERiod? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  334
SOURce:PULSe:WIDTh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  334
SOURce:PULSe:WIDTh? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  335
SOURce:VOLTage[:AMPLitude]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  335

STATus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
The Operation Status Group  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339

STATus:OPERation:CONDition?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339
STATus:OPERation:ENABle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  340
STATus:OPERation:ENABle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341
STATus:OPERation[:EVENt]?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341
STATus:OPERation:NTRansition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341
STATus:OPERation:NTRansition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  342
STATus:OPERation:PTRansition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  342
STATus:OPERation:PTRansition?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343
STATus:PRESet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  344

The Questionable Data Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  344
 STATus:QUEStionable:CONDition?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  344
STATus:QUEStionable:ENABle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345
STATus:QUEStionable:ENABle?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
STATus:QUEStionable[:EVENt]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
STATus:QUEStionable:NTRansition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
STATus:QUEStionable:NTRansition?  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347
STATus:QUEStionable:PTRansition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  347
STATus:QUEStionable:PTRansition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348
Contents   17



SYSTem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349
SYSTem:CTYPe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349
SYSTem:ERRor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349
SYSTem:VERSion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  350

TRIGger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351
TRIGger:COUNt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
TRIGger:COUNt?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
TRIGger[:IMMediate] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  354
TRIGger:SOURce  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  354
TRIGger:SOURce?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  355
TRIGger:TIMer[:PERiod]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  355
TRIGger:TIMer[:PERiod]?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  356

IEEE-488.2 Common Command Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357
*CAL?   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357
*CLS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358
*DMC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358
*EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358
*EMC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358
*ESE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359
*ESE?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359
*ESR?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359
*GMC?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359
*IDN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  359
*LMC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360
*OPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360
*OPC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360
*PMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  361
*RMC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  361
*RST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  361
*SRE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  362
*SRE?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  362
*STB?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  362
*TRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363
*TST?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363
*WAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366

 Command Quick Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

Appendix A
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  375

HP E1422 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  375

HP E1529A Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

Appendix B
Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407

Appendix C
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  417
18   Contents



Appendix D
Wiring and Noise Reduction Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  421

Separating Digital and Analog SCP Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .  421

Recommended Wiring and Noise Reduction Techniques  . . . . . . . . . . . . . . . . .  422
Wiring Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  422
HP E1422 Guard Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423
Common Mode Voltage Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423
When to Make Shield Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423

Noise Due to Inadequate Card Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423

HP E1422 Noise Rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424
Normal Mode Noise (Enm)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424
Common Mode Noise (Ecm)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424
Keeping Common Mode Noise out of the Amplifier . . . . . . . . . . . . . . . . . .  424

Appendix E
Generating User Defined Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  425

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  425

Haversine Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  426

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  428

Appendix F
Example PID Algorithm Listings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

PIDA Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

PIDB Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431

PIDC Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  438

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  445
Contents   19



20   Contents



Chapter 1

Getting Started

About this Chapter
This chapter will explain hardware configuration before installation in a 
VXIbus mainframe. By attending to each of these configuration items, your 
HP E1422 won’t have to be removed from its mainframe later. Chapter 
contents include:

• Configuring the HP E1422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    21
• Instrument Drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    29
• About Example Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    29
• Verifying a Successful Configuration . . . . . . . . . . . . . . . . . . . . . . .    30

 Configuring the HP E1422
There are several aspects to configuring the module before installing it in a 
VXIbus mainframe. They are:

• Setting the Logical Address Switch  . . . . . . . . . . . . . . . . . . . . . . . .    22
• Installing Signal Conditioning Plug-ons . . . . . . . . . . . . . . . . . . . . .    23
• Disabling the Input Protect Feature (optional) . . . . . . . . . . . . . . . .    27
• Disabling Flash Memory Access (optional) . . . . . . . . . . . . . . . . . .    27

For most applications you will only need to change the Logical Address 
switch prior to installation. The other settings can be used as delivered. 

Note Setting the VXIbus Interrupt Level:  The HP E1422 uses a default VXIbus 
interrupt level of 1. The default setting is made at power-on and after a 
*RST command. You can change the interrupt level by executing the 
DIAGnostic:INTerrupt[:LINe] command in your application program.

Switch/Jumper Setting

Logical Address Switch 208

Input Protect Jumper Protected

Flash Memory Protect Jumper PROG
Getting Started  21Chapter 1



Setting the Logical
Address Switch

Follow the next figure and ignore any switch numbering printed on the 
Logical Address switch. When installing more than one HP E1422 in a 
single VXIbus Mainframe, set each instrument to a different Logical 
Address.

Setting the Logical Address Switch
22 Getting Started  Chapter 1



Installing Signal
Conditioning

Plug-ons

The following illustrations show the steps you’ll use to install Signal 
Conditioning Modules. Before you install your SCPs, you should read the 
"Separating Digital and Analog SCP Signals" in Appendix D page 421. 

Caution Use approved Static Discharge Safe handling procedures 
anytime you have the covers removed from the HP E1422 or are 
handling SCPs.

Remove 2 screws (#10 Torx);
lift front and slide out tabs

1

2

Remove the SCP
Retaining Screws

E1520 REMVLEFT

Installing SCPs: Step 1, Removing the Cover  HP E1422
Getting Started  23Chapter 1



Align the SCP
Connectors with the
Module Connectors

and then Push in

2

1
Tighten the SCP
Retaining Screws

SCP

CAUTION
Use approved Static
Discharge handling

procedures when handling
the HP E1413 Scanning

A/D Module and the SCPs.

E1520 INSLSCP

Installing SCPs: Step 2, Mounting an SCP
24 Getting Started  Chapter 1



Tighten
2 Screws

Line up the 3 Tabs
with the 3 Slots;
then lower cover
onto the Module

2

1

E1520 INSTLEFT

Installing SCPs: Step 3, Reinstalling the Cover  HP E1422
Getting Started  25Chapter 1



Peel off correct
Label from Card and

Stick on the
appropriate place on

the Cover

1

2

Peel off Label from
Card and Stick on

the Terminal
Module to be

Connected to the
A/D Module

Stick-on Label furnished with the SCP
(HP part number: E15xx-84304)

Terminal Module
(Connect to A/D
Module Later)

Installing SCPs: Step 4, Labeling
26 Getting Started  Chapter 1



n. 

n 

ore 
 

f it 

ered 
 

e 
Disabling the
Input Protect

Feature
(optional)

Disabling the Input Protect feature voids the HP E1422’s warranty. The Input 
Protect feature allows the HP E1422 to open all channel input relays if any input’s 
voltage exceeds ±19 volts (±6 volts for digital I/O SCPs). This feature will help to 
protect the card’s Signal Conditioning Plug-ons, input multiplexer, ranging 
amplifier, and A/D from destructive voltage levels. The level that trips the 
protection function has been set to provide a high probability of protection. The 
voltage level that is certain to cause damage is somewhat higher. If in your 
application the importance of completing a measurement run outweighs the 
added risk of damage to your HP E1422, you may choose to disable the Input 
Protect feature.

 Voids Waranty! Disabling the Input Protection Feature voids the HP E1422’s warranty. 

To disable the Input Protection feature, locate and cut JM2202. Make a single cut in 
the jumper and bend the adjacent ends apart. See following illustration for location 
of JM2202. 

Disabling
Flash Memory

Access
(optional)

The Flash Memory Protect Jumper (JM2201) is shipped in the “PROG” positio
We recommend that you leave the jumper in this position so that all of the 
calibration commands can function. Changing the jumper to the protect positio
will mean you won't be able to execute:

• The SCPI calibration command CAL:STORE ADC | TARE
• The register-based calibration commands STORECAL, and STORETAR
• Any application that installs firmware-updates or makes any other 

modification to Flash Memory through the A24 window.

With the jumper in the “PROG” position, you can completely calibrate one or m
HP E1422s without removing them from the application system. An HP E1422
calibrated in its working environment will in general be better calibrated than i
were calibrated separate from its application system.

The multimeter you use during the periodic calibration cycle should be consid
your calibration transfer standard. Have your Calibration Organization control
unauthorized access to its calibration constants. See the HP E1422 Service Manual 
for complete information on HP E1422 periodic calibration.

If you must limit access to the HP E1422's calibration constants, you  can plac
JM2201 in the protected position and cover the shield retaining screws with 
calibration stickers. See following illustration for location of JM2201.
Getting Started  27Chapter 1



 

JM2201

1 Locate

2 Cut

Input Protect Jumper
Warning: Cutting this Jumper

Voids Your Warranty!
E1413 FIG1-3

Flash Memory Protect Jumper
Default = PROG
(recommended)

JM2202

3 Bend

Accessing and Locating JM2201 and JM2202  HP E1422
28 Getting Started  Chapter 1



 
 

Installing the Module
Installation of the HP E1422 VXI module is covered in your HP Mainframe manual.

WARNING All instruments within the VXI mainframe are grounded through 
the mainframe chassis. During installation, tighten the 
instrument’s retaining screws to secure the instrument to 
the mainframe and to make the ground connection.

WARNING SHOCK HAZARD. Only qualified, service-trained personnel who 
are aware of the hazards involved should install, configure, or 
remove the VXI Module. Disconnect all power sources from the 
mainframe, the Terminal Modules, and installed modules before 
installing or removing a module.

Instrument Drivers
Two driver types are supplied on the HP Universal Drivers CD that comes with your 
Instrument. There is a VXIplug&play driver which includes a front panel program 
and help file. In addition there is also a down-loadable driver for the HP E1406A 
Command Module. Follow the instructions that are presented by the CD setup 
program. Also view the readme.txt file provided with the VXIplug&play driver for 
possible update information.

About Example Programs

Examples on CD All example programs mentioned by file name in this manual are available on the 
HP Universal Drivers CD supplied with your HP E1422. Again see the readme.txt 
file for the specific file locations of these examples.

Example
Command

Sequences

Where programming concepts are discussed in this manual, the commands to send 
to the HP E1422 are shown in the form of command sequences. These are not 
example programs because they are not written in any computer language. They are 
meant to show the HP E1422 SCPI commands in the sequence they should be sent. 
Where necessary these sequences include comments to describe program flow and 
control such as loop - end loop, and if - end if. See “Example SCPI Command
Sequence” on page 134. for an example. For VXIplug&play users, there is an
“Example VXIplug&play Driver Function Sequence” on page 135.

Typical Example
program

The Verify program (file name verif.cpp) is printed below to show a typical 
VXIplug&play program for the HP E1422.
Getting Started  29Chapter 1



m is 
file 
 
 error 
g 
nt 
Verifying a Successful Configuration
An example ’C’ program source is shown on the following pages.  This progra
included on your HP Universal Drivers CD that comes with your HP E1422A (
name verif.cpp).  The program uses the *IDN? query command to verify the HP
E1422  is operational and responding to commands.  The program also has an
checking function (check()). It is important to include an instrument error checkin
routine in your programs, particularly your first trial programs so you get insta
feedback while you are learning about the HP E1422. Compile this program 
according to the plug&play help file (hpe1422.hlp) topics "Introduction to 
Programming"→"Compiling and Linking Programs Using Integrated 
Environments".

/*******************************************************************************
   verif.cpp

   This example program verifies your instrument installation by reading the
   instrument IDs and then querying for and printing the SCP types found.
   
   Use the "Copy Button" in the Help File’s "Example" window to place this code
   into the clipboard, then paste this code text into your development tool’s
   editor window. Similarly, "Copy" the actual example code from the help file’s
   "Example" window and paste it into the location provided below.
   

   This program should be compiled in the ’large’ memory model.

   link with the hpe1422_32.lib - library file

 *******************************************************************************
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hpe1422.h>    /* include the driver header file */

 /* GPIB-VXI addressing (0 is the interface number, 208 is the */
 /* instrument logical address, INSTR is a VISA resource type) */
#define INSTR_ADDRESS "GPIB-VXI0::208::INSTR" 

ViSession  addr;
ViStatus  errStatus;

 /* Function Prototypes */
void main (void);  /* Main function */
void rst_inst(void); /* Resets the instrument and sends a device clear */
void reads_instrument_id(void); /* reads instrument software revision */
void check (ViSession addr, ViStatus errStatus); /* checks module errors */

/*******************************************************************************/
void main (void) /* Main function */
{
 ViChar  err_message[256];
 
 /* Set the session and status variables */
 #if defined(__BORLANDC__) && !defined(__WIN32__)
     _InitEasyWin();
 #endif
30 Getting Started  Chapter 1



 /* open device session and reset the instrument; check if successful */
 errStatus = hpe1422_init(INSTR_ADDRESS,0,0,&addr);
     if( VI_SUCCESS > errStatus)          
     {
         hpe1422_error_message( addr, errStatus, err_message);
         printf("Unable to open %s\n", INSTR_ADDRESS);
         printf("hpe1422_init() returned error message %s\n", err_message);
         return;
     }                           

 rst_inst();     /* Resets the instrument and sends a device clear */

 reads_instrument_id();  /* Reads instrument software revision */

 /* close the device session */   
 hpe1422_close(addr); 
} 

/****************************************************************************/
void rst_inst(void)
 /* Function to set the interface timeout period, resets the instrument, */
 /* waits for completion of reset, and sends a device clear to enable */
 /* the instrument to receive a new command */
{
    ViInt32 result;

 /* set timeout to allow completion of reset */
 errStatus = hpe1422_timeOut(addr, 5000);
 check(addr, errStatus);
    
 /* reset the instrument */
 errStatus = hpe1422_reset(addr);
 check(addr, errStatus);

 /* wait for completion of *RST */
 errStatus = hpe1422_cmdInt32_Q(addr,"*OPC?",&result);
 check(addr, errStatus);

 /* send a device clear to enable new commands to be sent to the instrument */
 errStatus = hpe1422_dcl(addr);
 check(addr, errStatus);

 /* enables automatic error checking after each driver call */
 errStatus = hpe1422_errorQueryDetect( addr, VI_TRUE);

}

/****************************************************************************/
void reads_instrument_id(void)
 /* Function uses a hpe1422__revision_query to read the software revision */
 /* string. */
{
 ViChar  driver_rev[256];
 ViChar  instr_rev[256];

     /* Query the instrument for its firmware revision */
 errStatus = hpe1422_revision_query(addr,  driver_rev, instr_rev);

     /* Print the results */
 printf("The instrument driver’s revision is %s\n", driver_rev);
 printf("The instrument’s firmware revision is %s\n", instr_rev);
}

/****************************************************************************/
Getting Started  31Chapter 1



/****************************************************************************/
        /* error checking routine */                                            
void check (ViSession addr, ViStatus errStatus)
{
 ViInt32 err_code;
 ViChar err_message[256];
        
 if(VI_SUCCESS > errStatus)
 { 
  hpe1422_dcl(addr);    /* send a device clear */
  if(hpe1422_INSTR_ERROR_DETECTED == errStatus)
  {
     /* read instrument error until error queue is empty*/

  do
  {

        hpe1422_error_query( addr, &err_code, err_message);
        if(err_code != 0) printf("Instrument Error : %ld, %s\n", err_code, 
err_message);

  }
  while(err_code != 0);

  }
  else
  {
                        /* query the instrument */
   hpe1422_error_message( addr, errStatus, err_message);
                        /* display the error */
   printf("Driver Error : %ld, %s\n", errStatus, err_message); 
  }
}                              
                
        return;
}

32 Getting Started  Chapter 1



Chapter 2

Field Wiring

About This Chapter
This chapter shows how to plan and connect field wiring to the HP E1422’s 
Terminal Module. The chapter explains proper connection of analog signals 
to the HP E1422, both two-wire voltage type and four-wire resistance type 
measurements. Connections for other measurement types (e.g., strain using 
the Bridge Completion SCPs) refer to the specific SCP manual. Chapter 
contents include:

• Planning Your Wiring Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    33
• Faceplate Connector Pin-Signal Lists . . . . . . . . . . . . . . . . . . . . . . .    37
• Optional Terminal and Connector Modules . . . . . . . . . . . . . . . . . .    38
• Reference Temperature Sensing with the HP E1422  . . . . . . . . . . .    42
• Preferred Measurement Connections  . . . . . . . . . . . . . . . . . . . . . . .    44
• Connecting the On-board Thermistor . . . . . . . . . . . . . . . . . . . . . . .    47
• Wiring and Attaching the Terminal Module . . . . . . . . . . . . . . . . . .    48
• Removing the HP E1422 Terminal Modules  . . . . . . . . . . . . . . . . .    50
• Adding Components to the Terminal Module. . . . . . . . . . . . . . . . .    52
• Spring and Screw Terminal Module Wiring Maps . . . . . . . . . . . . .    53

Planning Your Wiring Layout
The first point to understand is that the HP E1422 makes no assumptions 
about the relationship between Signal Conditioning Plug-on (SCP) function 
and the position in the HP E1422 that it can occupy. You can put any type 
of SCP into any SCP position. There are, however, some factors you should 
consider when planning what mix of SCPs should be installed in each of your 
HP E1422s. The following discussions will help you understand these 
factors.

SCP Positions and
Channel Numbers

The HP E1422 has a fixed relationship between Signal Conditioning Plug-on 
positions and the channels they connect to. Each of the eight SCP positions 
can connect to eight channels. Figure 2-1 shows the channel number to SCP 
relationship.
Field Wiring  33Chapter 2



T
e
rm

in
a
l M

o
d
u
le

16-Bits

Terminal
Module

SCP
Position 7

(on-board addresses 56-63)

SCP
Position 6

(on-board addresses 48-55)

SCP
Position 5

(on-board addresses 40-47)

SCP
Position 4

(on-board addresses 32-39)

SCP
Position 3

(on-board addresses 24-31)

SCP
Position 2

(on-board addresses 16-23)

SCP
Position 0

(on-board addresses 00-07)

SCP
Position 1

(on-board addresses 08-15)

Note: Each channel line represents
Both a Hi and Lo signal line.

     Range Amp

A/D
Converter

Figure 2-1. Channel Numbers at SCP Positions
34 Field Wiring  Chapter 2



Sense SCPs and
Output SCPs

Some SCPs provide input signal conditioning (sense SCPs such as filters and 
amplifiers) while others provide stimulus to your measurement circuit 
(output SCPs such as current sources and strain bridge completion). In 
general, channels at output SCP positions are not used for external signal 
sensing but are paired with channels of a sense SCP. Two points to remember 
about mixing output and sense SCPs:

1. Paired SCPs (an output and a sense SCP) may reside in separate 
HP E1422s. SCP outputs are adjusted by *CAL? to be within a 
specific limit. The Engineering Unit (EU) conversion used for a sense 
channel will assume the calibrated value for the output channel.

2. Output SCPs while providing stimulus to your measurement circuit 
reduce the number of external sense channels available to your 
HP E1422.

Figure 2-2 illustrates an example of "pairing" output SCP channels with sense 
SCP channels (in this example, four-wire resistance measurements). 

Figure 2-2. Pairing Output and Sense SCP Channels
Field Wiring  35Chapter 2



Planning for
Thermocouple
Measurements

Using either the Screw Terminal or Spring Terminal Modules you can wire 
your thermocouples and your thermocouple reference temperature sensor to 
any of the HP E1422’s channels. When you execute your scan list, you only 
have to make sure that the reference temperature sensor is specified in the 
channel sequence before any of the associated thermocouple channels.

External wiring and connections to the HP E1422 are made using Terminal 
Modules (see Figures 2-4 through 2-6).

Note The isothermal reference temperature measurement made by an HP E1422 
applies only to thermocouple measurements made by that instrument. In 
systems with multiple HP E1422s, each instrument must make its own 
reference measurements. The reference measurement made by one 
HP E1422 can not be used to compensate thermocouple measurements 
made by another HP E1422. 

Note To make good low-noise measurements you must use shielded wiring from 
the device under test to the Terminal Module at the HP E1422. The shield 
must be continuous through any wiring panels or isothermal reference 
connector blocks and must be grounded at a single point to prevent ground 
loops. See "Preferred Measurement Connections" later in this section and 
“Wiring and Noise Reduction Methods” on page 421.
36 Field Wiring  Chapter 2



Faceplate Connector Pin-Signal Lists
Figure 2-3 shows the Faceplate Connector Pin Signal List for the HP E1422.

Figure 2-3. HP E1422A Faceplate Connector Pin Signals
Field Wiring  37Chapter 2



ce. 
ct 

minal 

inal 
Optional Terminal and Connector Modules
The HP E1422 is comprised of the main A/D module and optionally, a 
Connector or Terminal Module. The Option 001 Connector Module provides 
16 RJ-45 jacks to allow easy connection of the HP E1422A to Remote Signal 
Conditioning Units (RSCUs) like the HP E1529A Remote Strain 
Conditioning Unit. Optional conventional terminal modules include a 
Terminal Module with screw clamped terminal blocks (Option 011), and 
another with spring clamped terminal blocks (Option 013).

The Spring Terminal Module and Screw Terminal Module provide:

• Terminal connections to field wiring.
-- Allows a mix of direct field wiring with some connections to 

Remote Signal Conditioning Units
• Strain relief for the wiring bundle.
• Reference junction temperature sensing for thermocouple 

measurements.
• Ground to Guard connections for each channel.

The RJ-45 Connector Module provides:

• Easy mass terminated plug-in connection to HP Remote Signal 
Conditioning Units (RSCUs).

• Allows some direct analog or digital field wiring to be connected to 
RJ-45 modular plugs that are then plugged into the Connector Module.

• Note: Since the RJ-45 Connector Module was designed for connection 
to RSCUs, it doesn’t provide an on-board isothermal reference 
thermistor or connection to the HP E1422A’s on-board current sour
This means that the RJ-45 Terminal Module is not suitable for dire
connection to thermocouples.

The SCPs and
Terminal Module

Each SCP includes a set of labels to map that SCP's channels to the Ter
Module's terminal blocks. See “Installing SCPs: Step 4, Labeling” on 
page 26.

Terminal Module
Layout

Figures 2-4 through 2-6 show the layout and feature location of the Term
Modules available for the HP E1422A.

WARNING When handling user wiring connected to the Terminal Module, 
consider the highest voltage present accessible on any 
terminal. Use only wire with an insulation rating greater than 
the highest voltage which will be present on the Terminal 
Module. Do not touch any circuit element connected to the 
Terminal Module if any other connector to the Terminal Module 
is energized to more than 30VACRMS or 60VDC.
38 Field Wiring  Chapter 2



The RJ-45
Connector Module

Figure 2-4 shows the HP E1422A Option 001 RJ-45 Connector Module with 
connector pin numbering.

Spring Terminal
Module Layout

Figure 2-5 shows the HP E1422A Option 013 Spring Terminal Module 
features and jumper locations. 

Caution WIRING THE TERMINAL MODULES. When wiring to the 
terminal connectors on the screw clamp and spring clamp 
Terminal Module, be sure not to exceed a 5mm strip back of 
insulation to prevent the possibility of shorting to other wiring 
on adjacent terminals.

Figure 2-4. RJ-45 Connector Module and Pin-out

0
1

8
9

1 6
1 7

2 4
2 5

3 2
3 3

4 0
4 1

4 8
4 9

5 6
5 7

R
ead M

anual for R
elease Instructions

!
R

elease
R

elease

Ch0

Shield Gnd

+ = Hi
- = Lo

1 2 3 4 5 6 7 8

Ch6

Shield Gnd

+

Ch2-

+

Ch2

-

RJ-45 Connector Module Pinout
for Std SCP I/O (even chs 0,2,4,6)

Ch4

SCP position 0, chs 0-6 and 1-7

SCP position 1, chs 8-14 and 9-15

SCP position 2, chs 16-22 and 17-23

SCP position 3, chs 24-30 and 25-31

SCP position 4, chs 32-38 and 33-39

SCP position 5, chs 40-46 and 41-47

SCP position 6, chs 48-54 and 49-55

SCP position 7, chs 56-62 and 67-63

Ch1

Shield Gnd

+ = Hi
- = Lo

1 2 3 4 5 6 7 8

Ch7

Shield Gnd

+

Ch3-

+

Ch3

-

RJ-45 Connector Module Pinout
for Std SCP I/O (odd chs 1,3,5,7)

Ch5
Field Wiring  39Chapter 2



Terminal Block with
Remote Temperature Sensing,
Trigger, and other ConnectionsOn-board Thermistor

for Temperature Sensing

Jumper to select for
On-board or Remote

Temperature Sensing

Terminal Block for
Input Connections

Sockets for Guard to
Ground Connections

Figure 2-5. HP E1422A Spring Terminal Module
40 Field Wiring  Chapter 2



Screw Terminal
Module Layout

Figure 2-6 shows the HP E1422A Option 011 Screw Terminal Module 
features and jumper locations. 

Figure 2-6. HP E1422A Screw Terminal Module
Field Wiring  41Chapter 2



Reference Temperature Sensing with the HP E1422
The Screw Terminal and Spring Terminal Modules provides an on-board thermistor 
for sensing isothermal reference temperature of the terminal blocks. Also provided 
is a jumper set (J1 in Figures 2-7 and 2-8) to route the HP E1422’s on-board current 
source to a thermistor or RTD on a remote isothermal reference block. Figure 2-7 
and Figure 2-8 show connections for both local and remote sensing. See “Connecting 
the On-board Thermistor” on page 47. for location of J1.

On-Board
Current Source

E1415 Terminal Module Field Wiring

REM
ON

BOARD

J1

HTI

LTI

HTS

LTS

Hnn

Lnn

Any Sense
Channel

Figure 2-7. On-Board Thermistor Connection

On-Board
Current Source

E1415 Terminal Module Field Wiring

REM
ON

BOARD

J1

HTI

LTI

HTS

LTS

Hnn

Lnn

Any Sense
Channel

Figure 2-8. Remote Thermistor or RTD Connections
42 Field Wiring  Chapter 2



Terminal Module
Considerations for
TC Measurements

The isothermal characteristics of the HP E1422 Terminal Module are crucial for 
good TC readings and can be affected by any of the following factors:

1. The clear plastic cover must be on the Terminal Module.
2. The thin white mylar thermal barrier must be inserted over the Terminal 

Module connector. This prevents airflow from the HP E1422 A/D Module 
into the Terminal Module.

3. The Terminal Module must also be in a fairly stable temperature 
environment, and it is best to minimize the temperature gradient between the 
HP E1422 module and the Terminal Module.

4. The VXI mainframe cooling fan filters must be clean and there should be as 
much clear space in front of the fan intakes as possible.

5. Recirculating warm air inside a closed rack cabinet can cause a problem if 
the Terminal Module is suspended into ambient air that is significantly 
warmer or cooler. If the mainframe recess is mounted in a rack with both 
front and rear doors, closing both doors helps keep the entire HP E1422 at a 
uniform temperature. If there is no front door, try opening the back door.

6. HP recommends that the cooling fan switch on the back of the of an HP 
E1401 Mainframe is in the "High" position. The normal variable speed 
cooling fan control can make the internal HP E1422 module temperature 
cycle up and down, which affects the amplifiers with these uV level signals.
Field Wiring  43Chapter 2



Preferred Measurement Connections

For any A/D Module to scan channels at high speeds, it must use a very short sample 
period (<10µsecond for the HP E1422). If significant normal mode noise is 
presented to its inputs, that noise will be part of the measurement. To make quiet, 
accurate measurements in electrically noisy environments, use properly connected 
shielded wiring between the A/D and the device under test. Figure 2-9 shows 
recommended connections for powered transducers, thermocouples, and resistance 
transducers. (See Appendix D page 421 for more information on Wiring 
Techniques).

Notes 1. Try to install Analog SCPs relative to Digital I/O as shown in "Separating 
Digital and Analog Signals" in Appendix .

2. Use individually shielded, twisted-pair wiring for each channel.
3. Connect the shield of each wiring pair to the corresponding Guard (G) 

terminal on the Terminal Module (see Figure 2-10 for schematic of Guard to 
Ground circuitry on the Terminal Module).

4. The Terminal Module is shipped with the Ground-Guard  (GND-GRD) 
shorting jumper installed for each channel. These may be left installed or 
removed (see Figure 2-11 to remove the jumper), dependent on the following 
conditions:
a. Grounded Transducer with shield connected to ground at the 

transducer: Low frequency ground loops (DC and/or 50/60Hz) can 
result if the shield is also grounded at the Terminal Module end. To 
prevent this, remove the GND-GRD jumper for that channel (Figure 2-9 
A/C).

b. Floating Transducer with shield connected to the transducer at the 
source: In this case, the best performance will most likely be achieved by 
leaving the GND-GRD jumper in place (Figure 2-9 B/D).

3. In general, the GND-GRD jumper can be left in place unless it is necessary to 
remove to break low frequency (below 1 kHz) ground loops.

4. Use good quality foil or braided shield signal cable.
5. Route signal leads as far as possible from the sources of greatest noise.
6. In general, don’t connect Hi or Lo to Guard or Ground at the HP E1422.
7. It is best if there is a D.C. path somewhere in the system from Hi or Lo to 

Guard/Ground.
8. The impedance from Hi to Guard/Ground should be the same as from Lo to 

Guard/Ground (balanced).
9. Since each system is different, don’t be afraid to experiment using the 

suggestions presented here until you find an acceptable noise level.

IMPORTANT!
44 Field Wiring  Chapter 2



Example for
Resistive
Transducers

Hi

Lo

Guard

Current Hi ( - )

Current Lo ( + )

Guard

Lo

Hi

Lo

Hi

Guard

Lo

Hi

Example for
Thermocouples

Example for
Powered
Transducers

Lo

Hi

Shield

Shield

Shield

Shield

power

power

power

power

pressure

pressure

A

B

C

D

E

Device
Under Test

Device
Under Test

Device
Under Test

Device
Under Test

Guard
Remove Jumper to
break Ground Loop
(shield connected to
ground at transducer)

Leave Jumper
in Place
(transducer floating)

Remove Jumper to
break Ground Loop
(shield connected to
ground at transducer)

Guard

Leave Jumper
in Place
(transducer floating)

Jumper may be left in
place, since Current Lo( + )
is at E1415 GND Potential

P
to
V

P
to
V

ShieldShield

Figure 2-9. Preferred Signal Connections
Field Wiring  45Chapter 2



Figure 2-10. GRD/GND Circuitry on Terminal Module

Figure 2-11. Grounding the Guard Terminals

.1 µF GND to GRD Jumper
(removable)

1 KΩ

.1 µF GND to GRD Jumper
(removable)

G0

G7

For each
SCP Position

External Connections
SCP

10 KΩ

10 KΩ

1 KΩ

Terminal Module

Removing Guard to
Ground on Channel 00
46 Field Wiring  Chapter 2



ring 

2. for 
Connecting the On-board Thermistor
The following figures show how to use the HP E1422 to make temperature 
measurements using the on-board Thermistor or a remote reference sensor.  The 
Thermistor is used for reference junction temperature sensing for thermocouple 
measurements. Figure 2-12 shows the configuration for the HP E1422A’s Sp
Terminal Module, Figure 2-6 shows the configuration for the Screw Terminal 
Module. See “Reference Temperature Sensing with the HP E1422” on page 4
a schematic diagram of the reference connections.

Under Cover

ON BOARD
Place both J1 jumpers here to
connect current source to
on-board thermistor RT1. Sense
RT1 by connecting any sense
channels to terminals HTS and
LTS.

REMote
Place both J1 jumpers here to
route current source to terminals
HTI and LTI. Connect these
terminals to remote thermistor or
RTD. Sense with any sense
channel.

See Figure 2-13 on page 48 to remove the cover

Figure 2-12.  Temperature Sensing for the Terminal Module
Field Wiring  47Chapter 2



Wiring and Attaching the Terminal Module
Figures 2-13 and 2-14 show how to open, wire, and attach the terminal module to 
an HP E1422.

3

5mm

1

secure wires.

wire exit panels.
Remove 1 of the 3

Remove and Retain Wiring Exit Panel

   and release.

Tab

Tighten wraps to

(Screw Type)

B. Press tab forward

A. Release screws.

Use wire size 20-26 AWG

Depress terminal lever(s). Insert
wire(s) into terminal(s). Release levers.

Make Connections (Spring Clamp)

Remove Clear Cover.

(Shipped with Terminal Module)
Special tool HP P/N 8710-2127

0.2"

2

Insert wire into terminal.
Tighten screw.

VW1 Flammability
Rating

5mm
0.2"

size 16-26
AWG

Use wire

Route Wiring4

Figure 2-13. Opening and Wiring the E1422’s Terminal Module
48 Field Wiring  Chapter 2



Figure 2-14. Closing and Attaching the HP E1422 Terminal Module
Field Wiring  49Chapter 2



Removing the HP E1422 Terminal Modules
Figure 2-15 shows how to remove the Spring Terminal and Screw Terminal Modules 
from the HP E1422A. 

Extraction Lever

2 Free and remove the Terminal
Module from the A/D Module

Extraction Lever

HP E1415

1 Release the two extraction
levers and push both levers
out simultaneously

Extraction Lever

Use a small screwdriver
to pry and release the
two extraction levers

Figure 2-15. Removing the Screw and Spring Terminal Modules
50 Field Wiring  Chapter 2



Attaching and Removing the HP E1422 RJ-45 Module
Figure 2-16 shows how to remove the RJ-45 Terminal Module.

Releasing the Extraction Levers to Remove the Terminal Module3

Install on HP E1422A1
the Terminal Module onto the
Push in the Extraction Levers to Lock

Levers
Extraction

HP E1422A

2

Screwdriver
With 1/8"

Blade

Figure 2-16. Removing the RJ-45 Terminal Module
Field Wiring  51Chapter 2



Adding Components to the Terminal Module
The back of the terminal module P.C. board provides surface mount pads which you 
can use to add serial and parallel components to any channel’s signal path. Figure 
2-17 shows additional component locator information (see the schematic and pad 
layout information on the back of the teminal module P.C. board). Figure 2-18 shows 
some usage example schematics.

Figure 2-17. Additional Component Location 

Figure 2-18. Series & Parallel Component Examples
52 Field Wiring  Chapter 2



Spring and Screw Terminal Module Wiring Maps
Figure 2-19 shows the Spring Terminal Module wiring map.

Top

All wiring entering Terminal
Module passes under this

strain relief bar

H24
L24
G24
H25
L25
G25
H26
L26
G26
H27
L27
G27
H28
L28
G28
H29
L29
G29
H30
L30
G30
H31
L31
G31

H16
L16
G16
H17
L17
G17
H18
L18
G18
H19
L19
G19
H20
L20
G20
H21
L21
G21
H22
L22
G22
H23
L23
G23

H08
L08
G08
H09
L09
G09
H10
L10
G10
H11
L11
G11
H12
L12
G12
H13
L13
G13
H14
L14
G14
H15
L15
G15

H00
L00
G00
H01
L01
G01
H02
L02
G02
H03
L03
G03
H04
L04
G04
H05
L05
G05
H06
L06
G06
H07
L07
G07

G32
L32
H32
G33
L33
H33
G34
L34
H34
G35
L35
H35
G36
L36
H36
G37
L37
H37
G38
L38
H38
G39
L39
H39

GND
GND
GND
GND
LTS
HTS
LTI
HTI

GND
TRIG
GND
LCAL
HCAL
LOHM
HOHM
GND
GND
GND

G40
L40
H40
G41
L41
H41
G42
L42
H42
G43
L43
H43
G44
L44
H44
G45
L45
H45
G46
L46
H46
G47
L47
H47

G48
L48
H48
G49
L49
H49
G50
L50
H50
G51
L51
H51
G52
L52
H52
G53
L53
H53
G54
L54
H54
G55
L55
H55

G56
L56
H56
G57
L57
H57
G58
L58
H58
G59
L59
H59
G60
L60
H60
G61
L61
H61
G62
L62
H62
G63
L63
H63

Heavy line indicates the
side of the terminal block

that the wire enters

Figure 2-19. Spring Terminal Module Full-Size Wring Map
Field Wiring  53Chapter 2



Figure 2-20 shows the Screw Terminal Module wiring map

Figure 2-20. Screw Terminal Module Full-Size Wiring Map
54 Field Wiring  Chapter 2



able 
trol 

es 
so 

ith 
nd 

   56
 56
  57
  60
  65
   66
  66
 67
  70
 72
   73
  73
   75
  75
76
  80
  83
87
  89
Chapter 3

Programming the HP E1422A & HP E1529A
for Remote Strain Measurement

About This Chapter
This chapter describes using the HP E1422A in combination with the 
HP E1539A Remote Channel SCP and HP E1529A Remote Strain 
Conditioning Units to make large channel count strain measurements. We 
show the system used in a strictly data acquisition mode where after 
configuration it is driven by a channel list you define (the Scan List), and 
sends the measurements to the unit’s FIFO buffer and Current Value T
(CVT) for transfer to your computer. Of course you can also create con
algorithms that execute concurrently with the Scan List driven data 
acquisition operation. Chapter 4 and Chapter 5 cover general data 
acquisition and control programming with algorithms. This chapter assum
that you are the expert when it comes to making strain measurements 
we’re simply going to show you how to make your strain measurements w
the HP Remote Strain Measuring System (HP E1422A, HP E1539As, a
HP E1529As). The chapter will cover:

• Instrument Setup for Remote Strain Measurements . . . . . . . . . . . .
-- Preparing the HP E1422A for Installation  . . . . . . . . . . . . . . . . .   
-- Installing User Selected 1/4 Bridge Resistors (optional)  . . . . . .  
-- Connecting HP E1529As to the HP E1422A . . . . . . . . . . . . . . .  
-- Connecting Excitation Supplies  . . . . . . . . . . . . . . . . . . . . . . . . .  

• Connecting the HP E1529A to Strain Gages  . . . . . . . . . . . . . . . . .
-- Channel Connector Pin-to-Signal Relationship  . . . . . . . . . . . . .  
-- HP E1529A Bridge Configurations  . . . . . . . . . . . . . . . . . . . . . .   

• Connecting to the HP E1529A’s Dynamic Strain Ports  . . . . . . . . .  
-- Dynamic Strain Port Offset Control . . . . . . . . . . . . . . . . . . . . . .   

• Remote Strain Channel Addressing  . . . . . . . . . . . . . . . . . . . . . . . .
-- Runtime Remote Scan Verification. . . . . . . . . . . . . . . . . . . . . . .  

• Programming for Remote Strain Measurement  . . . . . . . . . . . . . . .
-- Description of Strain Measurement  . . . . . . . . . . . . . . . . . . . . . .  

Measure Strain Using Built-in Strain EU Conversion  . . . . . .    
Measure Strain Using User Specified EU Conversion . . . . . .  
Measure Bridge Voltages and Convert to Strain . . . . . . . . . . .  

• Verifying Correct Bridge Completion (Shunt Cal) . . . . . . . . . . . . .    
• Built-in Strain Conversion Equations . . . . . . . . . . . . . . . . . . . . . . .  
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  55Chapter 3



u 
nd 
ere 

ing 
1 
stem. 
Instrument Setup for Remote Strain Measurements
This section involves:

• Preparing the HP E1422A for installation into a VXIbus Mainframe
• Preparing the HP E1429A for use
• Connecting the HP E1422A to HP E1529A Remote Strain Completion 

units.
• Connecting Excitation power supplies to the HP E1529A
• Connecting strain bridges to the HP E1529A

Preparing the
HP E1422A for

Installation

The HP E1422A needs HP E1539A SCPs to control Remote Signal 
Conditioning Units like the HP E1529A Remote Strain Conditioning Unit. 
Chapter 1 “Getting Started” covers everything you need to do before yo
install your HP E1422A in its Mainframe. This includes switch settings a
SCP installation. After performing the operations in Chapter 1, return h
for Remote Strain specific operations.

Overview Before we get into the specifics of configuring a Remote Strain Measur
System, it might help you to see what we are going to set-up. Figure 3-
shows the components and connections of a remote strain measuring sy
The circled letters identify connections that will be referred to in later 
sections.

Figure 3-1. Components of the Remote Strain Measuring System

HP E1529A

HP E1529A

Up-to 32 Strain

Up-to 32 Strain

Up-to 4 Excitation Supplies

Up-to 4 Excitation Supplies

U
p-

to
 1

6 
H

P
 E

15
29

A
s

HP E1422A Multifunction
DAC Module Shown With

An Option 001 RJ-45
Connector Module

A

CA

BEach HP E1422A With HP E1539A SCPs
And HP E1529A Remote Strain Units
Can Support Up-To 512 Strain Gages

HP E1539A
SCP (Up-To 8)

Gages

Gages
56 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



nal)” 

er 
well 
Preparing the
HP E1529A for Use

For most applications, the HP E1529A is ready for installation as delivered. 
It is designed to be easily rack mounted in a system cabinet by its built-in 
front panel extensions. All user connection are accessible on the front panel 
with the exception of the line-cord jack which is on the rear of the unit. The 
only pre-installation operation you might need to consider is installation of 
user supplied quarter-bridge completion resistors. If your application 
requires these, see “Installing User Selected 1/4 Bridge Resistors (optio
in the following section.

WARNING Ground the equipment: The Safety earth ground for the 
HP E1529A is supplied through the ground conductor of the 
power cable. Make sure your installation’s AC line supply 
connectors provide a suitable earth ground.

WARNING The power cord is the only way to disconnect the HP E1529A 
from AC power. Therefore, the power cord must be accessible 
to the operator at all times. When the HP E1529A is mounted in 
a system cabinet, the power cord need not be accessible since 
the cabinet must have its own disconnect device.

Installing User
Selected 1/4 Bridge
Resistors (optional)

Perform this operation only if you require one or more HP E1529A channels 
to provide 1/4 Bridge completion of other than 120Ω or 350Ω . Only those 
with experience soldering components on printed circuit boards should 
attempt this installation. The HP E1529A provides locations on its printed 
circuit board to install your own 1/4 bridge completion resistors. Bridge 
configuration commands then can switch your resistors into the bridge 
completion circuits where you’ve installed custom value resistors.

WARNING Keep away from live circuits: Operating personnel must not 
remove equipment covers or shields. Procedures involving the 
removal of covers or shields are for use by service-trained 
personnel only. Under certain conditions, dangerous voltages 
may exist even with the equipment switched off. To avoid 
dangerous electrical shock, DO NOT perform procedures 
involving cover or shield removal unless you are qualified to do 
so. 

Removing the Top Cover Figure 3-2 shows how to access the printed circuit board where the us
specified resistors will be installed. Notice that both a surface-mount as 
as a through-hole position is provided for each channel.
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  57Chapter 3



Figure 3-2. Removing the HP E1529A Top Cover

3
Remove Top Cover

PC Board

See Detail "A"

Unlatch Cover from

on Each Side
Bottom Cover Tab

2

1

Tab

Detail "A"

Loosen
Top Cover

Screw
58 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



Locating Resistors Figure 3-3 provides the relationship between P.C. board location and bridge 
resistor channel number. The surface mount pads nearest the through-hole 
locations are in parallel with them. 

Installing Resistors Figure 3-4 shows a typical user selected 1/4 bridge resistor installation. Note 
that resistor installations can be accomplished from the top of the board 
without further disassembly. If you are installing through-hole resistors, you 
must be very careful to observe the specified maximum safe resistor lead 
length to avoid shorting the resistor to the chassis.

Figure 3-3. Locating User 1/4 Bridge Resistor Positions

R
02

-U
S

E
R

R
0 3

-U
S

E
R

R
0 7

-U
S

E
R

R
06

-U
S

E
R

R
1 1

-U
S

E
R

R
10

-U
S

E
R

R
1

5-
U

S
E

R

R
1

4-
U

S
E

R

R
18

-U
S

E
R

R
19

-U
S

E
R

R
2

2-
U

S
E

R

R
2

3-
U

S
E

R
R

17
-U

S
E

R

R
16

-U
S

E
R

R
21

-U
S

E
R

R
20

-U
S

E
R

R
27

-U
S

E
R

R
26

-U
S

E
R

R
3

1-
U

S
E

R

R
3

0-
U

S
E

R
R

24
-U

S
E

R

R
25

-U
S

E
R

R
28

-U
S

E
R

R
29

-U
S

E
R

R
08

-U
S

E
R

R
09

-U
S

E
R

R
1

2-
U

S
E

R

R
1

3-
U

S
E

R
R

01
-U

S
E

R

R
00

-U
S

E
R

R
05

-U
S

E
R

R
04

-U
S

E
R

P401
P402

P
40

3

R
00

-U
S

E
R

R
01

-U
S

E
R

OROR

Surface-Mount
Resistor Positions

Through-Hole
Resistor Positions

"Rxx" Indicates the
Channel Number

Figure 3-4. Installing User 1/4 Bridge Resistors

2.54mm
0.1"

PC Board

Chassis
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  59Chapter 3



y to 
 in 
Connecting
HP E1529As to the

HP E1422A

The cable between an HP E1422A and each HP E1529A (connection "A" in 
Figure 3-1) is a standard type of cable used in computer Local Area 
Networks (LANs). The HP E1529A can be any distance up-to 1000 feet 
from the HP E1422A, and the interconnect cable can be easily custom made 
to fit the installation. In fact, if your firm has an Information Technology 
department, they may already be making or having made this same type of 
cable assembly.

The cable assembly as a whole must comply with the TIA/EIA-568 
Category 5 standard for LAN interconnecting cable. This is a performance 
based standard and will insure that the HP E1422A will be able to make 
accurate measurements from an HP E1529A over the maximum cable length 
of 1000 feet (305 meters). Additionally, the cable and connectors must be 
shielded.

Cabling Supplies and
Tools

Tables 3-1 and 3-2 show part numbers for supplies that will allow you to 
quickly custom make high quality cables for your installation. If you opt to 
have a third party build your cables, make certain they supply you with 
cables that comply with the TIA/EIA-568 Category 5 standard and are 
shielded. The part numbers shown here are those of major suppliers in the 
industry. These numbers can be cross-referenced to other supplier’s 
equivalent products.

Please note that safety standards for wiring (flammability etc.) may appl
your installation and you should check applicable codes and standards
your area and select the proper type of cable accordingly (plenum vs. 
non-plenum types etc.).

‡DuPont trademark

Table 3-1. 

Cable Part Numbers for Belden Wire & Cable Company

Overall-Shielded Twisted Pair (STP) TIE/EIA-568 Category 5 (4 twisted pairs)

Plenum Type:  (Flame Retardant Jacket and FEP ‡Teflon insulation) 1586A

Non-Plenum Type:  (PVC Jacket and polyolefin insulation) 1584A

Table 3-2. 

Connector Part Numbers for AMP Incorporated 

RJ-45 Plug:  (for solid conductors and round shielded cable)  5-569530-4

RJ-45 Plug:  (for stranded conductors and round shielded cable)  5-569550-4

Strain Relief  558527-1

Hooded Boot:  (replace X with 0=Gry, 1=Blk, 2=Lt. Almond, 
3=Red, 4=Grn, 5=Blu, 6=Yel, 7=Org, 8=Wht, 9=Vio)

 569875-X

RJ-45:  Plug Installation Tool with 8-position dies 2-231652-1
60 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



A’s 
s a 
e 39 
ule. 
Two Interconnect
Methods

Depending on which Terminal Module you ordered with your HP E1422A, 
there are two methods of interconnecting an HP E1529A to the HP E1422A 
(connection "A" in Figure 3-1). 

The Option 001 RJ-45
Connector Module

The RJ-45 Connector Module is used when most or all of HP E1422A SCP 
positions contain an HP E1539A Remote Channel SCP. For RSCUs, you 
just plug one end into the HP E1422A, and the other into the HP E1529
Data Interface connector.Figure 3-5 shows this connection and include
schematic diagram of the RJ-45-to-RJ-45 cable. See Figure 2-4 on pag
for on-board SCP channel connection through the RJ-45 connector mod

Figure 3-5. Connecting HP E1529As to the RJ-45 Connector Module

HP E1422A Option 001

HP E1529A

Length up-to 1000 feet

Wht/Grn

Grn

Wht/Org

Blu

Wht/Blu

Org

Wht/Brn

Brn

1

2

3

4

5

6

7

8

7

8

4

6

5

3

2

1

TIA/EIA 568A
Wiring Diagram

ShieldShield

Twisted Pair

Twisted Pair Twisted Pair

Twisted Pair
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  61Chapter 3



nels 
 

ition 
al 

he 
Spring, and Screw
Terminal Modules

For mixed on-board SCP channels and RSCU operation, you can use the 
spring type, or screw type terminal modules. For standard SCP channel 
connections see Chapter 2 “Field Wiring” on page 33. For remote chan
you connect the individual wires from each HP E1529A’s data interface
cable to the appropriate terminals for remote channel operation. The 
HP E1539A SCP is supplied with signal locator labels for each SCP pos
on a Spring Terminal Module. No label is provided for the Screw termin
module. Instead, Table 3-3 provides the relationship between each 
HP E1439A signal name and associated terminal name as printed on t
Terminal Module.

Table 3-3. 

SCP Signal Names - to - Terminal Names

SCP Position Plug
Pin#

HP E1539A Signal Name
(with EIA/TIA-568A

wire color-code)

Terminal Name on
Terminal Module

(SCP’s low channel)

Terminal Name on
Terminal Module

(SCP’s High Channel)
SCP Position 0
Addresses
10000 to 10131

1 Analog+   (wht-green) HI 00 HI 01

2 Analog-    (green) LO 00 LO 01

3 Cal+        (wht-orange) HI 02 HI 03

4 RS-485+  (blue) HI 04 HI 05

5 RS-485-   (wht-blue) LO 04 LO 05

6 Cal-         (orange) LO 02 LO 03

7 Trigger+   (wht-brown) HI 06 HI 07

8 Trigger-    (brown) LO 06 LO 07

SCP Position 1 
Addresses
10800 to 10931

1 Analog+   (wht-green) HI 08 HI 09

2 Analog-    (green) LO 08 LO 09

3 Cal+        (wht-orange) HI 10 HI 11

4 RS-485+  (blue) HI 12 HI 13

5 RS-485-   (wht-blue) LO 12 LO 13

6 Cal-         (orange) LO 10 LO 11

7 Trigger+   (wht-brown) HI 14 HI 15

8 Trigger-    (brown) LO 14 LO 16

SCP Position 2 
Addresses
11600 to 11731

1 Analog+   (wht-green) HI 16 HI 17

2 Analog-    (green) LO 16 LO 17

3 Cal+        (wht-orange) HI 18 HI 19

4 RS-485+  (blue) HI 20 HI 21

5 RS-485-   (wht-blue) LO 20 LO 21

6 Cal-         (orange) LO 18 LO 19

7 Trigger+   (wht-brown) HI 22 HI 23

8 Trigger-    (brown) LO 22 LO 23

SCP Position 3 
Addresses
12400 to 12531

1 Analog+   (wht-green) HI 24 HI 25

2 Analog-    (green) LO 24 LO 25

3 Cal+        (wht-orange) HI 26 HI 27

4 RS-485+  (blue) HI 28 HI 29

5 RS-485-   (wht-blue) LO 28 LO 29

6 Cal-         (orange) LO 26 LO 27

7 Trigger+   (wht-brown) HI 30 HI 31

8 Trigger-    (brown) LO 30 LO 31
62 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



SCP Position 4 
Addresses
13200 to 13331

1 Analog+   (wht-green) HI 32 HI 33

2 Analog-    (green) LO 32 LO 33

3 Cal+        (wht-orange) HI 34 HI 35

4 RS-485+  (blue) HI 36 HI 37

5 RS-485-   (wht-blue) LO 36 LO 37

6 Cal-         (orange) LO 34 LO 35

7 Trigger+   (wht-brown) HI 38 HI 39

8 Trigger-    (brown) LO 38 LO 39

SCP Position 5 
Addresses
14000 to 14131

1 Analog+   (wht-green) HI 40 HI 41

2 Analog-    (green) LO 40 LO 41

3 Cal+        (wht-orange) HI 42 HI 43

4 RS-485+  (blue) HI 44 HI 45

5 RS-485-   (wht-blue) LO 44 LO 45

6 Cal-         (orange) LO 42 LO 43

7 Trigger+   (wht-brown) HI 46 HI 47

8 Trigger-    (brown) LO 46 LO 47

SCP Position 6 
Addresses
14800 to 14931

1 Analog+   (wht-green) HI 48 HI 49

2 Analog-    (green) LO 48 LO 49

3 Cal+        (wht-orange) HI 50 HI 51

4 RS-485+  (blue) HI 52 HI 53

5 RS-485-   (wht-blue) LO 52 LO 53

6 Cal-         (orange) LO 50 LO 51

7 Trigger+   (wht-brown) HI 54 HI 55

8 Trigger-    (brown) LO 54 LO 55

SCP Position 7
Addresses
156000 to 157131

1 Analog+   (wht-green) HI 56 HI 57

2 Analog-    (green) LO 56 LO 57

3 Cal+        (wht-orange) HI 58 HI 59

4 RS-485+  (blue) HI 60 HI 61

5 RS-485-   (wht-blue) LO 60 LO 61

6 Cal-         (orange) LO 58 LO 59

7 Trigger+   (wht-brown) HI 62 HI 63

8 Trigger-    (brown) LO 62 LO 63

Table 3-3. 

SCP Signal Names - to - Terminal Names

SCP Position Plug
Pin#

HP E1539A Signal Name
(with EIA/TIA-568A

wire color-code)

Terminal Name on
Terminal Module

(SCP’s low channel)

Terminal Name on
Terminal Module

(SCP’s High Channel)
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  63Chapter 3



Example Terminal
Module to HP E1529A

Connection

Figure 3-6 shows a typical connection to an HP E1529A through one of the 
optional terminal modules. In this case, the connection is to the low channel 
on the HP E1539A in SCP position number 6 (channels 14800 - 14831). For 
connection to other SCP positions, use the "Terminal Module Connection 
Formula" from Figure 3-6 or the data from Table 3-3.

Figure 3-6. Connecting an HP E1529A to an Optional Terminal Module

F
ro

m
 P

in
 2

F
ro

m
 P

in
 1

F
ro

m
 P

in
 6

F
ro

m
 P

in
 3

F
ro

m
 P

in
 5

F
ro

m
 P

in
 4

F
ro

m
 P

in
 8

F
ro

m
 P

in
 7

1
2

3
4

5
6

7
8

wht-org
green
wht-grn

blue
wht-blu
orange
wht-brn
brown

SCP Pos.  *  8  +
wht-grn
green
wht-org
orange
blue
wht-blu
wht-brn
brown

0 Hi
0 Lo
2 Hi
2 Lo
4 Hi
4 Lo
6 Hi
6 Lo

Lo

Lo

Lo

Lo

wht-org
orange

wht-grn
SCP Pos.  *  8  +

wht-brn
wht-blu
blue

brown

green
1 Hi

Hi5

7

5
7 Hi

3
3

1
Hi

SCP Low Channel SCP High Channel

Terminal Module Connection Formula
64 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



als.
nt 

er 
Connecting
Excitation Supplies

This connection is shown as "B" in Figure 3-1. The HP E1529A uses 
external excitation supplies. There are four pairs of input pins (and Gnd) at 
the "Bridge Excitation" connector for up-to four individual excitation 
supplies. Each of these four inputs powers eight channels through a 
programmable switch. You can of course parallel-wire multiple excitation 
inputs to a single power supply.

 Notes 1. The maximum excitation voltage the HP E1422A can sense through 
the HP E1529A’s excitation sense path is 16 volts (±8VDC centered 
about the Gnd terminal). If you supply higher excitation voltage 
through the HP E1529A, don’t connect the excitation sense termin

2. Make sure that the power supply you choose can supply the curre
requirement of all of the bridges it can be switched to. It will be 
connected to all bridges you are going to measure before a 
measurement scan is started. The supply switches can not be 
programmatically re-configured while a measurement scan is und
way. You must halt a measurement scan to programmatically 
re-configure the excitation supply switches. 

-P
  DC

+P

  DC
-P

+P
Power

Supply 1

Power
Supply 4

Chs 24-31

Chs 0-7

1

2

3

8

9

    2K

    2K

    2K

    2K

Power Supplies
and Cabling

Inside
HP E1529A

Ch 0-7
Gnd

+  -

Ch 8-15

+  -

+  - +  -

Ch 16-23 Ch 24-31

1 5

6 9

Gnd

Figure 3-7. Excitation Supply Connections
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  65Chapter 3



J-45 
pe of 

in 
g 
Connecting the HP E1529A to Strain Gages
The following discussion relates to the connection marked "C" in Figure 3-1 
on page 56. We’ll show you how to connect your strain gages to the R
telecom connectors. These connections can be made with the same ty
cable and crimp-on connectors used for Data Interface connection 
(connection "A" in Figure 3-1). See Figure 3-8 for an example gage 
connection.

Channel Connector
Pin-to-Signal
Relationship

Figure 3-9 shows the pin-to-signal relationship for each HP E1529 stra
gage connector. You will find these same signal names on the followin
strain bridge configuration illustrations too.

Figure 3-8. HP E1422 to Strain Gage Connection

RJ-45 Modular Connector (Shielded)

8-Conductor Twisted-Pair, Overall-Shielded
(Probably Stranded for Flexability)

(Example Half-Bridge Connection)

Figure 3-9. Pin-out for Strain Gage Connectors

Shield Gnd

Excitation

Excitation Sense

Shield Gnd

Pinout for Lower Connector Row

Excitation Sense

Sense

Excitation

R Cal

R Cal

+-

Sense

-+

- +
-

-
+

Shield Gnd

Pinout for Upper Connector Row

Shield Gnd

321 4 5 6 7 8

6 5 4 2 138 7

SenseSense
66 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



in is 
sen 
ith 
ad 
HP E1529A Bridge Configurations

The Quarter Bridge
configuration

Figure 3-10 shows the connections to the 8-pin telecom connector for a 
quarter bridge configuration. It also shows a simplified schematic of the 
bridge completion settings for a quarter bridge channel.

Note While the diagram above shows amplifier gain in the measurement path, 
the measurement values returned by these channels are corrected by the 
HP E1422A’s DSP chip (Digital Signal Processor) to reflect the actual 
value at the user input terminal. The only time you need to consider ga
when the input voltage times the gain would overload the A/D range cho
with a SENS:FUNC:...  <range>,(<ch_list>) command. For example, w
a gain of 32, any input voltage greater than 0.5V would cause an overlo
reading even on the highest A/D range (16V).

Figure 3-10. Bridge Completion for a Quarter Bridge Channel

Strain
Bridge

8-pin telcom
connector (RJ-45)

Cal-Cal+

350

120

customer

10K

10K

10K

10K

+

-

Optional
Filter

2,10,100Hz

Instrument.
Amplifier

Buffer

Dynamic Strain
Output

To HP E1422A
(E1539A SCP)

+ Excitation

- Excitation

X2
Buffer

Internal
Rcal

50K
Local Rcal

Enable

Remote Rcal
Enable

Int/Ext Rcal
Select

Excitation Sense
from CHs 1-31

32:1
Mux

CH31

CH00

CH01

32:1
Mux

CH31

CH01
CH00

Bridge Sense
from CHs 1-31

External customer
shunt cal resistor

terminals

-R Cal

+R Cal

RJ-45

enable excitation
CHs 0-7

Quarter Bridge (channel 0 shown)

Current
Limit

Excitation
to CHs 1-7

+Excitation

+Sense

-Sense

-R Cal

+R Cal

+Excitation Sense

-Excitation Sense

-Excitation

Wagner
Voltage enable

off for full bridge

X16

+Excitation Sense
-Excitation Sense

OUTP:SHUNT:SOUR INT | EXTOUTP:SHUNT  ON | OFF

SENS:FUNC:STRAIN:<br_type>
or

SENS:STR:BRIDge:TYPE

CAL:REMote?

SENS:STR:EXC:STATE

SENS:STR:CONNect BRID | EXC

INP:FILT:FREQ
INP:FILT:STATe

X2 2:1
Mux

Cal-
Cal+

Pin 5

RJ-45 Pin#
12345678

Pin 4

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  67Chapter 3



in is 
sen 
ith 
ad 
The Half Bridge
configuration

Figure 3-11 shows the connections to the 8-pin telecom connector for a half 
bridge configuration. It also shows a simplified schematic of the bridge 
completion settings for a half bridge channel.

Note While the diagram above shows amplifier gain in the measurement path, 
the measurement values returned by these channels are corrected by the 
HP E1422A’s DSP chip (Digital Signal Processor) to reflect the actual 
value at the user input terminal. The only time you need to consider ga
when the input voltage times the gain would overload the A/D range cho
with a SENS:FUNC:...  <range>,(<ch_list>) command. For example, w
a gain of 32, any input voltage greater than 0.5V would cause an overlo
reading even on the highest A/D range (16V).

Figure 3-11. Bridge Completion for a Half Bridge Channel

Strain
Bridge

8-pin telcom
connector (RJ-45)

Cal-Cal+

350

120

customer

10K

10K

10K

10K

+

-

Optional
Filter

2,10,100Hz

+Excitation Sense

Instrument.
Amplifier

Dynamic Strain
Output

+ Excitation

- Excitation

Internal
Rcal

50K
Local Rcal

Enable

Remote Rcal
Enable

Int/Ext Rcal
Select

Excitation Sense
from CHs 1-31

32:1
Mux

CH31

CH00

CH01

32:1
Mux

CH31

CH01
CH00

Bridge Sense
from CHs 1-31

External customer
shunt cal resistor

terminals

-R Cal

+R Cal

enable excitation
CHs 0-7

Half Bridge (channel 0 shown)

Current
Limit

Excitation
to CHs 1-7

+Excitation

+Sense

-Sense

-R Cal

+R Cal

+Excitation Sense

-Excitation Sense

-Excitation

Wagner
Voltage enable

off for full bridge
-Excitation Sense

X16

Buffer

To HP E1422A
(E1539A SCP)

X2
Buffer

RJ-45

OUTP:SHUNT:SOUR INT | EXTOUTP:SHUNT  ON | OFF

SENS:FUNC:STRAIN:<br_type>
or

SENS:STR:BRIDge:TYPE

CAL:REMote?

SENS:STR:EXC:STATE

SENS:STR:CONNect BRID | EXC

INP:FILT:FREQ
INP:FILT:STATe

X2 2:1
Mux

Cal-
Cal+

Pin 5

RJ-45 Pin#
12345678

Pin 4

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1
68 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



in is 
sen 
ith 
ad 
The Full Bridge
configuration

Figure 3-12 shows the connections to the 8-pin telecom connector for a full 
bridge configuration. It also shows a simplified schematic of the bridge 
completion settings for a full bridge channel.

Note While the diagram above shows amplifier gain in the measurement path, 
the measurement values returned by these channels are corrected by the 
HP E1422A’s DSP chip (Digital Signal Processor) to reflect the actual 
value at the user input terminal. The only time you need to consider ga
when the input voltage times the gain would overload the A/D range cho
with a SENS:FUNC:...  <range>,(<ch_list>) command. For example, w
a gain of 32, any input voltage greater than 0.5V would cause an overlo
reading even on the highest A/D range (16V).

Figure 3-12. Bridge Completion for a Full Bridge Channel

Buffer

To HP E1422A
(E1539A SCP)

X2
Buffer

RJ-45

OUTP:SHUNT:SOUR INT | EXTOUTP:SHUNT  ON | OFF

SENS:FUNC:STRAIN:<br_type>
or

SENS:STR:BRIDge:TYPE

CAL:REMote?

SENS:STR:EXC:STATE

SENS:STR:CONNect BRID | EXC

INP:FILT:FREQ
INP:FILT:STATe

X2 2:1
Mux

Cal-
Cal+

Strain
Bridge

8-pin telcom
connector (RJ-45)

Cal-Cal+

350

120

customer

10K

10K

10K

10K

+

-

Optional
Filter

2,10,100Hz

+Excitation Sense

Instrument.
Amplifier

Dynamic Strain
Output

+ Excitation

- Excitation

Internal
Rcal

50K
Local Rcal

Enable

Remote Rcal
Enable

Int/Ext Rcal
Select

Excitation Sense
from CHs 1-31

32:1
Mux

CH31

CH00

CH01

32:1
Mux

CH31

CH01
CH00

Bridge Sense
from CHs 1-31

External customer
shunt cal resistor

terminals

-R Cal

+R Cal

Current
Limit

Excitation
to CHs 1-7

enable excitation
CHs 0-7

Full Bridge (channel 0 shown)

+Excitation

+Sense

-Sense

-R Cal

+R Cal

+Excitation Sense

-Excitation Sense

-Excitation

Wagner
Voltage enable

off for full bridge
-Excitation Sense

X16

Pin 5

RJ-45 Pin#
12345678

Pin 4

Pin 2

Pin 7

Pin 6

Pin 3

Pin 8

Pin 1
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  69Chapter 3



 the 
the 

 a 
n the 
 be 
71.
Connecting to the HP E1529A’s Dynamic Strain Ports
The HP E1429A has two 37-pin connectors that provide wideband 
amplified outputs from each strain bridge signal. This allows you to connect 
to a high-speed ADC-per-channel instrument like the HP E1432A or 
HP E1433A to capture dynamic strain events.

While an instrument like the HP E1432A or HP E1433A can measure 
signals from the HP E1529A, an HP E1422A is still required to control the 
HP E1529A’s bridge configuration, calibration, and self-test functions.

One HP E1422A can control up-to 16 HP E1529As. Figure 3-13 shows
general interconnection layout for an HP E1432A. The cable shown is 
HP E1529A Option 001. This cable is 10 feet long. 

Extending the
Dynamic Strain

Connection

If you need additional length, build or have built, an extender cable with
male 37-pin D connector on one end and a female 37-pin D connector o
other. The extender cable must provide 16 twisted pair conductors and
overall shielded. See “Dynamic Strain Extender Cable Pin-Out” on page

Note The spacing between the two "Buffered Output" connectors is narrow 
(0.625 in.) and requires narrow connector shells. We have found two 
manufacturers’ parts that work well here. They are:
L-COM (distributor catalog cat# SDRS37HOT)
Cinch DC24660 (Newark Cat# - 45F988) 

Figure 3-13. HP E1432A to HP E1529A Connection

16-Channel HP E1432A

32-Channel HP E1529A

HP E1422A Provides
Control

Two HP E1432As Are
Required to Monitor All
32 HP E1529A Channels
70 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



Table 3-4. Dynamic Strain Extender Cable Pin-Out

Female 37-Pin Connector 
Pin Number

Signal Name Male 37-Pin Connector 
Pin Number

1 Buffered Output 0+/16+ 1

20 Buffered Output 0-/16- 20

2 Buffered Output 1+/17+ 2

21 Buffered Output 1-/17- 21

3 Buffered Output 2+/18+ 3

22 Buffered Output 2-/18- 22

4 Buffered Output 3+/19+ 4

23 Buffered Output 3-/19- 23

5 Buffered Output 4+/20+ 5

24 Buffered Output 4-/20- 24

6 Buffered Output 5+/21+ 6

25 Buffered Output 5-/21- 25

7 Buffered Output 6+/22+ 7

26 Buffered Output 6-/22- 26

8 Buffered Output 7+/23+ 8

27 Buffered Output 7-/23- 27

9 Buffered Output 8+/24+ 9

28 Buffered Output 8-/24- 28

10 Buffered Output 9+/25+ 10

29 Buffered Output 9-/25- 29

11 Buffered Output 10+/26+ 11

30 Buffered Output 10-/26- 30

12 Buffered Output 11+/27+ 12

31 Buffered Output 11-/27- 31

13 Buffered Output 12+/28+ 13

32 Buffered Output 12-/28- 32

14 Buffered Output 13+/29+ 14

33 Buffered Output 13-/29- 33

15 Buffered Output 14+/30+ 15

34 Buffered Output 14-/30- 34

16 Buffered Output 15+/31+ 16

35 Buffered Output 15-/31- 35

17, 18, 19, 36, 37 Shield (drain wire) 17, 18, 19, 36, 37
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  71Chapter 3



. 

t 
Dynamic Strain Port
Offset Control

Each buffered dynamic strain channel includes an offset adjusting DAC 
controlled by the command 
SOURce:VOLTage[:AMPLitude] <-offset_v>,(@<ch_list>). Reducing 
the unstrained bridge offset voltage at the dynamic strain port channel can 
allow the E1432A to measure the channel using a more sensitive range. See 
Figure 3-14 for the offset DAC arrangement.

To reduce the offset voltage at each dynamic strain "Buffered Output" 
channel:

1. Measure an unstrained Buffered Output channel with an E1432/33 
and place the value in a variable we’ll call offset_v.

2. Send minus offset_v to that channel with the SOUR:VOLT command
For example:  SOUR:VOLT -offset_v,(@10000)

Note With a 13mV resolution the offset DAC can reduce the Buffered Outpu
channel offset to within a few millivolts of zero.

Figure 3-14. Dynamic Strain Offset DAC

+

-

Buffer

To HP E1422A
(E1539A SCP)

X2

Channel Buffer

RJ-45
X2 2:1

Mux

Cal-
Cal+

Optional
Filter

2,10,100Hz

Instrument.
Amplifier

Dynamic Strain
Buffered Output

32:1
Mux

CH31

CH01
CH00X16

8-bit offset
DAC SOURce:VOLTage
72 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



it 
ard 
he 
sed 
the 
A 

ied 
ify 
 This 
 

igure 

nels 

e 
e 
ote 
 and 
Remote Strain Channel Addressing
Figure 3-15 shows the relationship between SCP positions and Remote 
Channel Addressing through the HP E1539A SCP (see Figure 2-1 on page 
34 to compare with On-Board Channel Addressing). Not all SCP positions 
need to contain HP E1539As. You can if you need, mix HP E1539As and 
other analog sense, source, and digital I/O SCPs.

Channels measured through Remote Signal Conditioning Units like the 
HP E1529A Remote Strain Conditioning Unit are addressed with 5 digit 
channels specifiers rather than the traditional on-board channel’s 3 dig
specifier. Both 3 and 5 digit specifier start with a "1". This is the SCPI "c
number" digit and is retained in the HP E1422A for SCPI compatibility. T
next 2 digits complete the specification of an on-board channel. When u
in a 5 digit remote multiplexed channel specifier, the first 3 digits mean 
same as in the on-board specifier. Digits 2 and 3 specify the HP E1539
SCP sense channel that is connected to a particular Remote Strain 
Conditioning Unit. Only the first two on-board channels are ever specif
with the HP E1539A Remote Channel SCP. So, digits 2 and 3 will spec
channels 00, 01, 08, 09, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 56, or 57.
allows the HP E1422A to address up-to 16 HP E1529As. Digits 4 and 5
specify one of 32 channels on the RSCU and can range from 00 to 31.

Example channel addresses (shown in SCPI channel list syntax), see F
3-15 also:

chan 0 on E1529A connected to on-board chan 0 (E1539A in SCP position 0).
(@10000)

chan 0 on E1529A connected to on-board chan 1 (E1539A in SCP position 0).
(@10100)

chan 24 on E1529A connected to on-board chan 48 (E1539A in SCP position 
6).

(@14824)

Of course, in the Scan List, the channel list syntax allows a range of chan
to be specified, here are some examples:

channels 0 to 31 on each of the two E1529As connected to on-board channels 
0 and 1 (E1539A in SCP position 0). This is 64 Chs

(@10000:10131)
channels 0 to 15 on the E1529A connected to on-board channel 24 (E1539A in 
SCP position 3).

(@12400:12415)
combined previous two examples into a single scan list to show combining 
ranges.

(@10000:10131,12400:12415)

Runtime Remote
Scan Verification

The HP E1422A provides a method to verify that remote channels in th
scan list you define in algorithms or with the ROUTe:SEQuence DEFin
command are succesfully scanned in each RSCU. See “Runtime Rem
Scan Verification” on page 94, “The Operating Sequence” on page 127,
“Runtime Remote Scan Verification” on page 161
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  73Chapter 3



16-Bits T
er

m
in

al
M

od
ul

e

HP E1529A Remote Strain
32 Addresses 0000 - 0031

HP E1529A Remote Strain
32 Addresses 0100 - 0131

HP E1529A Remote Strain
32 Addresses 0800 - 0831

HP E1529A Remote Strain
32 Addresses 0900 - 0931

HP E1529A Remote Strain
32 Addresses 1600 - 1631

HP E1529A Remote Strain
32 Addresses 1700 - 1731

HP E1529A Remote Strain
32 Addresses 2400 - 2431

HP E1529A Remote Strain
32 Addresses 2500 - 2531

HP E1529A Remote Strain
32 Addresses 3200 - 3231

HP E1529A Remote Strain
32 Addresses 3300 - 3331

HP E1529A Remote Strain
32 Addresses 4000 - 4031

HP E1529A Remote Strain
32 Addresses 4100 - 4131

HP E1529A Remote Strain
32 Addresses 4800 - 4831

HP E1529A Remote Strain
32 Addresses 4900 - 4931

HP E1529A Remote Strain
32 Addresses 5600 - 5631

HP E1529A Remote Strain
32 Addresses 5700 - 5731

Terminal
Module

HP 1539A SCP
Position 7

(on-board addresses 56-57)

HP 1539A SCP
Position 6

(on-board addresses 48-49)

HP 1539A SCP
Position 5

(on-board addresses 40-41)

HP 1539A SCP
Position 4

(on-board addresses 32-33)

HP 1539A SCP
Position 3

(on-board addresses 24-25)

HP 1539A SCP
Position 2

(on-board addresses 16-17)

HP 1539A SCP
Position 0

(on-board addresses 00-01)

HP 1539A SCP
Position 1

(on-board addresses 08-09)

33

32

25

24

17

16

08

09

00

01

41

40

48

49

57

56

Note: Each channel line represents
Both a Hi and Lo signal line.

    Range Amp

A/D
Converter

Figure 3-15. Remote Strain Channel Addressing
74 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



ter 
cide 
 a 

L? 
Programming for Remote Strain Measurement
This programming section is focused exclusively on programming the 
HP E1422A and HP E1529A for remote strain measurement. For more 
general HP E1422A programing see Chapter 4 “Programming the 
HP E1422A for Data Acquisition and Control”

Power-on and *RST
Configuration

Some of the programming operations that follow may already be set af
Power-on or after a *RST command. Where these default settings coin
with the configuration settings you require, you do not need to execute
command to set them. These are the default settings:

• No channels defined in scan list
• Programmable SCPs configured to their Power-on defaults.
• HP E1529A input filters:

-- INPut:FILTer:FREQuency  10,(@<all channels>)
-- INPut:FILTer:STATe  ON,(@<all channels>)

• All analog input channels linked to the EU conversion for voltage
• ARM:SOURce IMMediate
• TRIGger:SOURce TIMer
• TRIGger:COUNt 1
• TRIGer:TIMer .010 (10 msec)
• FORMat ASC,7 (ASCII)
• SENSe:DATA:FIFO:MODE BLOCking

• The Defaults for the STRain Subsystem when SENS:FUNC:STRain is 
selected will be:
-- Unstrained voltage for all strain channels is assumed to be zero
-- Gage factor for all strain channels is assumed to be 2.
-- Excitation voltage for all strain channels is assumed to be 1.0E6 

(must be changed to the actual value to make reasonable 
measurements).

• The default for the HP E1529A strain configuration switches is:
-- Full Bridge (FBEN) on all 32 Channels (SENS:STR:BRID FBEN
-- Bridge output sensed.

Description of
Strain Measurement

This section describes the three ways to make strain measurements with the 
HP E1529A. It includes references to SCPI commands as well as command 
sequences to perform the strain measurements described.

CALibration First To make proper measurements, *CAL? and CAL:REMote? should have 
been done first. Perform *CAL? and CAL:REMote? before making 
important measurement runs, or if the temperature of the instrument’s 
environment has changed significantly. Remember, the accuracy 
specifications given in Appendix A on page 375 depend on recent *CA
and CAL:REMote? operations.
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  75Chapter 3



g to 
nce 

nnel. 

ngs 
ter 
od, 

 are 

t 
Measure Strain Using
Built-in Strain EU

Conversion

This method lets the HP E1422A convert the strain bridge readings to units 
of strain (∈) before they are stored in the CVT and/or FIFO, or accessed by 
algorithms. There is no speed penalty and there is significant convenience in 
allowing the HP E1422A to make the Engineering Unit conversion to strain. 
In fact this is considered the "normal" HP E1422A measurement method.

When the command SENSe:FUNC:STRain:<bridge_type> is sent, the 
specified bridge type is configured by switches in each HP E1529A, the 
channel inputs are connected to the bridge outputs (see Figure 3-10 through 
Figure 3-12 starting on page67), and when the INIT command is sent, bridge 
voltage readings are automatically converted to strain before being stored 
into the FIFO buffer and/or CVT (current value table).

Before the E1422 can convert a channel’s bridge output voltage readin
strain, the gage factor, the excitation voltage, and the unstrained refere
voltage for that channel must be known.

You provide the above information to the E1422; below are the 
methods/commands to do so:

1. The gage factor default is 2.00 for each channel. To change any 
channel’s gage factor value, use the SENSe:STRain:GFACtor 
command.

2. The unstrained reference voltage default value is 0.0 on each cha
There are two ways to change any channel’s value.

a. Use the MEAS:VOLTage:UNSTrained? command 
(recommended), which will take an average of 32 voltage readi
on each specified channel and save the values internally for la
use by the strain EU conversion process. When using this meth
any loaded algorithms are not executed to avoid putting 
extraneous readings into the FIFO buffer. The voltage readings
also sent to the FIFO buffer in case you want to review them.

b. Measure the voltage directly using the following series of 
commands:

                 ROUTe:SEQ:DEFine (input the list of channels to measure)

                 SENSe:FUNC:VOLT (set measurement to voltage)

                 INIT             (take the measurement)

                 SENS:DATA:FIFO? (read the data)

Next, the unstrained voltage values read in above must be sen
back to the E1422A’s EU conversion routine by using the 
command: SENS:STRain:UNST <voltage value>,channel list
76 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



d), 

se 
any 
us 
 to 

 

) 

 

ay 
 It is 

train 
Note If an algorithm is loaded while method "b" is used, the fifo may contain 
more than just the unstrained voltage readings. It is up to the user to obtain 
the correct data and input it into the E1422.

3. The power-on and *RST excitation voltage value is 1.0E6; this value 
was chosen purposely so that obviously bad readings would result if 
this value was not changed to the true excitation voltage. You MUST 
change this value to get reasonable reading values. There are two 
ways to change any channel’s value.

a. Use the MEAS:VOLTage:EXCitation? command (recommende
which will take an average of 32 voltage readings on each 
specified channel(s) and save the value(s) internally for later u
by the strain EU conversion process. When using this method, 
loaded algorithm(s) are not executed to avoid putting extraneo
values into the FIFO buffer. The voltage readings are also sent
the FIFO buffer in case you want to review them.

b. Measure the voltage directly using the following series of 
commands:

                 ROUTe:SEQ:DEFine (input the list of channels to measure)

                 SENSe:FUNC:VOLT (sets measurement to voltage)

                 INIT     (assuming trigger system defaults, starts single scan

                 SENS:DATA:FIFO?  (reads the data)

Next, the excitation voltage values read in above must be sent
back to the E1422A’s EU conversion routine by using the 
command: SENS:STRain:EXC <voltage value>,(@<channel>)

Note If an algorithm is loaded while method "b" is used, it will execute and m
place values in the FIFO in addition to the unstrained voltage readings.
up to the user to obtain the correct data and input it into the E1422.

Figure 3-16 shows the sequence of commands to measure remote s
channels using the built-in strain Engineering Unit Conversion 
routines.
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  77Chapter 3



urce 

Built-in EU Conversion

Command Sequence
Here is an example VXIplug&play command sequence. Note that this in not 
executable, it’s been simplified for easier reading. The C++ example so
file (euseq.cpp) is on the CD supplied with your instrument.  View the 
readme.txt file provided with the VXIplug&play driver for example 
program file location.

/* set Engineering Units (function) to strain */
errStatus=hpe1422_cmd(sessn,"sens:func:str:hben auto,(@10000:10003)");
errStatus=hpe1422_cmd(sessn,"sens:func:str:fben auto,(@10004:10007)");

Figure 3-16. Sequence for Built-in Strain EU Conversion

Periodic Calibration

Retrieve readings from
FIFO and/or CVT

Trigger event for each pass
through Scan List

Set up Trigger System to scan
strain bridge channels

Set up the analog input Scan List

Measure unstrained bridge output
voltages and send to EU routines

Measure bridge excitation
voltages and send to EU routines

Send gage factors to
channel EU routines

To convert readings to
Engineering Units of strain

*CAL? and CALibration:REMote?

SENSe:FUNCtion:STRain:<bridge_type>. Also sets
bridge config switches and turns on excitation V

SENSe:STRain:GFACtor

MEASure:VOLTage:EXCitation?

MEASure:VOLTage:UNSTrained?

ROUTe:SEQuence:DEFine

TRIG:SOURce, TRIG:COUNt, ARM:SOURce
TRIG:TIMer

Set up Sample Timer for best
channel-to-channel scan rate

Initiate Trigger System

SAMPle:TIMer

INITiate[:IMMediate]

TRIG[:IMM], *TRG (if TRIG:SOUR HOLD),
EXTernal trig, TTLTRGn signal, or TRIG:TIMer

SENSe:DATA:FIFO:..., SENSe:DATA:CVTable?

Set Input Filter on HP E1529A INPut:FILTer:FREQuency, and INPut:FILTer:STATe
78 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



/* optionally set HP E1529A input filters (2, 10, or 100Hz) */
errStatus = hpe1422_cmd(sessn,"input:filter:frequency 10,(@10000:10007)");
/* optionally enable HP E1529A input filters (approx 100 KHz when OFF) */
errStatus = hpe1422_cmd(sessn,"input:filter:state ON,(@10000:10007)");

/* send gage factors to channel EU converaion routines */
errStatus=hpe1422_cmd(sessn,"sense:strain:gfactor 2,(@10000:10003)");
errStatus=hpe1422_cmd(sessn,"sense:strain:gfactor 2.5,(@10004:10007)");

/* measure the excitation voltage at each bridge. The values go to the
   channel EU conversion as well as the FIFO. We’ll clear the FIFO */
errStatus=hpe1422_cmdInt16_Q(sessn,"meas:volt:excitation? (@10000:10007)", &result16);
errStatus=hpe1422_cmd(sessn,"sense:data:fifo:reset"); /* throw away exc readings */

/* measure the unstrained bridge voltage at each bridge. The values go to the
   channel EU conversion as well as the FIFO. We’ll clear the FIFO */
errStatus=hpe1422_cmdInt16_Q(sessn,"meas:volt:unstrained? (@10000:10007)", &result16);
errStatus=hpe1422_cmd(sessn,"sense:data:fifo:reset"); /* throw away exc readings */

/* set up the scan list to include the strain channels to measure */
errStatus=hpe1422_cmd(sessn,"route:sequence:define (@10000:10007)");

/* set up the trigger system to make one scan for each trigger.
   Note that the default is one scan per trigger and trigger source
   is TIMer, so we only have to INITiate the trigger system to
   take readings. */
errStatus=hpe1422_cmd(sessn,"trigger:count 1"); /* *RST default */
errStatus=hpe1422_cmd(sessn,"trigger:source TIMer"); /* *RST default */
errStatus=hpe1422_cmd(sessn,"arm:source IMMediate"); /* *RST default */

/* set up the sample timer. This controls the channel to channel scan
   rate and can be important when channels need more than the default
   40 microsecond sample time. */
errStatus=hpe1422_cmd(sessn,"sample:timer 40E-6"); /* *RST default */

/* set the data FIFO format from a command module to 64-bit */
errStatus=hpe1422_cmd(sessn,"FORM PACK,64");

/* INITiate the trigger system to execute a measurement scan */
errStatus=hpe1422_cmd(sessn,"INIT:IMMediate");

/* retrieve readings from FIFO. Notice that for each scan, we read the
   number of values in the FIFO (sens:data:fifo:count?), then apply
   that value to control the number of readings we read with the
   hpe1422_readFifo_Q() function. For continuous data aquisition, see
   Chapter 4 of the manual under "Reading Fifo Data". */
errStatus=hpe1422_cmd(sessn,"INIT:IMMediate");
  
/* find the number of readings present in the FIFO */
errStatus=hpe1422_cmdInt32_Q(sessn,"sense:data:fifo:count?",&result32);

/* read the values from the FIFO. count returns number actually read */
errStatus=hpe1422_readFifo_Q(sessn, result32, 65024, f64_array, &count);
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  79Chapter 3



n 
Measure Strain Using
User Specified EU

Conversion

The HP E1422 measures voltage, and then applies a conversion routine 
(linear) supplied by the user. The user must supply the M (slope) and B 
(offset) of a linear M*volt + B conversion.

The DIAGnostic:CUSTom:MXB <slope>,<offset>,(@<ch_list>) command 
is used to supply the slope and offset for the strain conversion. To select the 
custom linear conversion to be used, the command 
SENSe:FUNCtion:CUSTom [<range>,](@<ch_list>) must be sent before 
starting measurements with the INIT command.

Before taking a measurement the following must be done:

1. The type of bridge connection must be specified using the 
[SENSe:]STRain:BRIDge[:TYPE] <select>,(@<ch_list>) 
command. The allowable values for <select> are: FBEN, HBEN, 
Q120 (quarter bridge, 120 ohms), Q350 (quarter bridge, 350 Ohms) 
or USER (quarter bridge, with the user supplied resistor). The 
power-on and *RST default setting is FBEN.

2. Configure channels to measure their strain bridge outputs rather than 
their excitation supply. This is done by sending the command:
[SENSe:]STRain:CONNect BRIDge,(@<ch_list>)
The power on and reset setting is BRIDge.

3. Turn on excitation voltage to the strain bridges with the 
SENSe:STRain:EXCitation:STATe ON,(@<ch_list>) command.

4. The linear conversion slope and offset (M and B) must be input via 
the DIAG:CUST:MXB command as mentioned above. The user must 
supply M and B, which both are functions of the excitation voltage, 
the unstrained reference and the gage factor.

5. The E1422 must be told to use the custom conversion when taking 
measurements. This is done by sending the command:
SENSe:FUNC:CUSTom  [<range>,](@<ch_list>)

Figure 3-17 shows the sequence of commands to convert remote 
measurements according to the user’s own down-loaded EU conversio
method..
80 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



Figure 3-17. Sequence for User’s Custom EU Conversion

Retrieve readings from
FIFO and/or CVT

Trigger event for each pass
through Scan List

Set up Trigger System to scan
strain bridge channels

Set up the analog input Scan List

Measure unstrained bridge output
voltages and retrieve from FIFO

Measure bridge excitation
voltages and retrieve from FIFO

Enable excitation voltage
to the strain bridges

SENSe:STRain:EXCitation:STATe

MEASure:VOLTage:EXCitation?
SENS:DATA:FIFO:PART?

MEASure:VOLTage:UNSTrained?
SENSE:DATA:FIFO:PART?

ROUTe:SEQuence:DEFine

TRIG:SOURce, TRIG:COUNt, ARM:SOURce
TRIG:TIMer

Set up Sample Timer for best
channel-to-channel scan rate

Initiate Trigger System

SAMPle:TIMer

INITiate[:IMMediate]

TRIG[:IMM], *TRG (if TRIG:SOUR HOLD),
EXTernal trig, TTLTRGn signal, or TRIG:TIMer

SENSe:DATA:FIFO:..., SENSe:DATA:CVTable?

Set Input Filter on HP E1529A INPut:FILTer:FREQuency, and INPut:FILTer:STATe

M(slope)=<your equation>
B(offset)=<your equation>

Download your linear EU conversion

solve your equation for M and B as a function of
Vunstrained and Vexcitation and Gage Factor

DIAGnostic:CUSTom:MXB  <M>,<B>,(@<ch_list>)

Convert readings using your custom
EU conversion

SENS:FUNC:CUST  <range>,(@ch<_list>)

Set bridge configuration switches SENSe:STRain:BRIDge[:TYPE]
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  81Chapter 3



urce 
 

Custom EU Conversion
Command Sequence

Here is an example VXIplug&play command sequence. Note that this in not 
executable, it’s been simplified for easier reading. The C++ example so
file (mxbseq.cpp) is on the CD supplied with your instrument.  View the
readme.txt file provided with the VXIplug&play driver for example 
program file location.

/* set bridge configuration switches */
errStatus=hpe1422_cmd(sessn,"sens:str:bridge fben,(@10000:10007)");

/* optionally set HP E1529A input filters (2, 10, or 100Hz) */
errStatus = hpe1422_cmd(sessn,"input:filter:frequency 10,(@10000:10007)");
/* optionally enable HP E1529A input filters (approx 100 KHz when OFF) */
errStatus = hpe1422_cmd(sessn,"input:filter:state ON,(@10000:10007)");

/* enable excitation voltage to strain bridges. Note that excitation is
   switched in banks of channels. So "E1529A relative" channels to switch
   are 0, 8, 16, and 24. The channel-range shown works too and is easier. */
errStatus=hpe1422_cmd(sessn,"sense:strain:excitation:state ON,(@10000:10007)");

/* set the data FIFO format for the command module to 64-bit */
errStatus=hpe1422_cmd(sessn,"FORM PACK,64");

/* measure the excitation voltage at each bridge. The values go to the
   FIFO. We’ll put them in their own array */
errStatus=hpe1422_cmdInt16_Q(sessn,"meas:volt:excitation? (@10000:10007)", &result16);

/* read the values from the FIFO. count returns number actually read */
errStatus=hpe1422_readFifo_Q(sessn, 0, 512, exc_array, &count);

/* measure the unstrained bridge voltage at each bridge. The values go to the
   channel EU conversion as well as the FIFO. We’ll clear the FIFO */
errStatus=hpe1422_cmdInt16_Q(sessn,"meas:volt:unstrained? (@10000:10007)", &result16);

/* read the values from the FIFO. count returns number actually read */
errStatus=hpe1422_readFifo_Q(sessn, 0, 512, uns_array, &count);

/************************ Custom EU Pre-processing ***************************
 *                                                                           *
 *  Solve your custom equation for M (slope) and B (offset) as a function    *
 *  of channel Vexcitation (exc_array), Vunstrained (uns_array) and          *
 *  gage factor.                                                             *
 *  For this example, we’ll just fix M and B at 2 and 0 respectively.        *
 *                                                                           *
 *  **************************************************************************
*/
M=2;
B=0;
     
/* download your derived Ms and Bs. We show downloading the same M and B to all 8
   channels. For highest accuracy, you would generate M and B for each channel to
   account for the channel-to-channel variability of the unstrained and excitation
   values measured. */

 /* create scpi command string with M, B, and channel list */
    sprintf( cmd_str, "diag:cust:mxb %f, %f,(@%s)", M, B, "10000:10007");
errStatus=hpe1422_cmd(sessn,cmd_str);

/* link your derived linear EU conversion(s) to the required channels */
errStatus=hpe1422_cmd(sessn,"sens:func:custom (@10000:10007)");

/* set up the scan list to include the strain channels to measure bridge outputs */
errStatus=hpe1422_cmd(sessn,"route:sequence:define (@10000:10007)");

/* set up the trigger system to make one scan for each trigger.
   Note that the default is one scan per trigger and trigger source
   is TIMer, so we only have to INITiate the trigger system to
   take readings. */
errStatus=hpe1422_cmd(sessn,"trigger:count 1"); /* *RST default */
errStatus=hpe1422_cmd(sessn,"trigger:source TIMer"); /* *RST default */
errStatus=hpe1422_cmd(sessn,"arm:source IMMediate"); /* *RST default */
82 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



/* set up the sample timer. This controls the channel to channel scan
   rate and can be important when channels need more than the default
   40 microsecond sample time. */
errStatus=hpe1422_cmd(sessn,"sample:timer 40E-6"); /* *RST default */

/* INITiate the trigger system to execute a measurement scan */
errStatus=hpe1422_cmd(sessn,"INIT:IMMediate");

/* retrieve readings from FIFO. Notice that for each scan, we read the
   number of values in the FIFO (sens:data:fifo:count?), then apply
   that value to control the number of readings we read with the
   hpe1422_readFifo_Q() function. For continuous data aquisition, see
   Chapter 4 of the manual under "Reading Fifo Data". */
errStatus=hpe1422_cmd(sessn,"INIT:IMMediate");

/* find the number of readings present in the FIFO */
errStatus=hpe1422_cmdInt32_Q(sessn,"sense:data:fifo:count?",&result32);

/* read the values from the FIFO. count returns number actually read */
errStatus=hpe1422_readFifo_Q(sessn, result32, 512, brdg_array, &count);

Measure Bridge Voltages
and Convert to Strain

If you want to use this method, you will make voltage measurements at the 
strain bridges while unstrained, then again while under strain. You will also 
measure the excitation voltage at each bridge. Using this data as well as the 
gage factor, you calculate strain conversion equations in your computer.

1. Set the measurement function to voltage with the 
[SENSe:]FUNC:VOLT <range>,(@<ch_list>)

2. The type of bridge connection must be specified using the 
[SENSe:]STRain:BRIDge[:TYPE] <select>,(@<ch_list>) 
command. The allowable values for <select> are: FBEN, HBEN, 
Q120 (quarter bridge, 120 ohms), Q350 (quarter bridge, 350 Ohms) 
or USER (quarter bridge, with the user supplied resistor). The 
power-on and *RST default setting is FBEN.

3. Configure channels to measure their strain bridge outputs rather than 
their excitation supply. This is done by sending the command:
[SENSe:]STRain:CONNect BRIDge,(@<ch_list>)
The power on and reset setting is BRIDge.

4. Use the MEAS:STR:UNSTrained? (@<ch_list>) command to read 
the voltage on each specified channels while the bridges are 
unstrained. This command which will take an average of 32 voltage 
readings on each channel and save the values to the FIFO buffer. The 
command returns the number of readings in the FIFO. When using 
this method, any loaded algorithms are not executed to avoid putting 
extraneous readings into the FIFO buffer.

5. Use the MEAS:STR:EXCitation? (@<ch_list>) command to sense 
the excitation at each of the specified bridges. This command will 
take an average of 32 voltage readings on each channel and save the 
values to the FIFO buffer. The command returns the number of values 
in the FIFO. When using this method, any loaded algorithm(s) are not 
executed to avoid putting extraneous values into the FIFO buffer.
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  83Chapter 3



6. Turn on excitation voltage to the strain bridges with the 
SENSe:STRain:EXCitation:STATe ON,(@<ch_list>) command.

7. Use the ROUTe:SEQuence:DEFine (@<ch_list>) command to 
define the scan list to measure the output voltage at each strain bridge. 
The <ch_list> specified here must match the <ch_list> specified in 
the two previous steps (measuring unstrained and excitation 
voltages).

8. Start the measurement scan with the INIT command. The default 
trigger system settings will execute a single measurement scan. 
During the scan, each channel reading is sent to the FIFO and CVT. 
Now you retrieve the readings and calculate the strain for each 
channel using the excitation, unstrained, and strained voltage values.

Figure 3-18 shows the sequence of commands to convert bridge voltage 
measurements to strain by post-processing.
84 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



urce 

Voltage Conversion

Command Sequence
Here is an example VXIplug&play command sequence. Note that this in not 
executable, it’s been simplified for easier reading. The C++ example so
file (voltseq.cpp) is on the CD supplied with your instrument.  View the 
readme.txt file provided with the VXIplug&play driver for example 
program file location.

/* set channel function for voltage readings (autorange) */

Figure 3-18. Converting Bridge Voltage Measurements to Strain

Readings returned in voltage

Retrieve readings from
FIFO and/or CVT

Trigger event for each pass
through Scan List

Set up Trigger System to scan
strain bridge channels

Set up the analog input Scan List

Measure unstrained bridge output
voltages and retrieve from FIFO

Measure bridge excitation
voltages and retrieve from FIFO

Enable excitation voltage
to the strain bridges

Set bridge configuration switches SENSe:STRain:BRIDge[:TYPE]

SENSe:STRain:EXCitation:STATe

MEASure:VOLTage:EXCitation?
SENS:DATA:FIFO:PART?

MEASure:VOLTage:UNSTrained?
SENSE:DATA:FIFO:PART?

ROUTe:SEQuence:DEFine

TRIG:SOURce, TRIG:COUNt, ARM:SOURce
TRIG:TIMer

Set up Sample Timer for best
channel-to-channel scan rate

Initiate Trigger System

SAMPle:TIMer

INITiate[:IMMediate]

TRIG[:IMM], *TRG (if TRIG:SOUR HOLD),
EXTernal trig, TTLTRGn signal, or TRIG:TIMer

SENSe:DATA:FIFO:..., SENSe:DATA:CVTable?

Set Input Filter on HP E1529A INPut:FILTer:FREQuency, and INPut:FILTer:STATe

Post-process unstrained, excitation,
gage factor, and strained values

to calculate strain

SENSe:FUNCtion:VOLTage
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  85Chapter 3



errStatus=hpe1422_cmd(sessn,"sens:func:voltage auto,(@10000:10007)");

/* set bridge configuration switches */
errStatus=hpe1422_cmd(sessn,"sens:str:bridge fben,(@10000:10007)");

/* optionally set HP E1529A input filters (2, 10, or 100Hz) */
errStatus = hpe1422_cmd(sessn,"input:filter:frequency 10,(@10000:10007)");
/* optionally enable HP E1529A input filters (approx 100 KHz when OFF) */
errStatus = hpe1422_cmd(sessn,"input:filter:state ON,(@10000:10007)");

/* enable excitation voltage to strain bridges. Note that excitation is
   switched in banks of channels. So "E1529A relative" channels to switch
   are 0, 8, 16, and 24. The channel-range shown works too and is easier. */
errStatus=hpe1422_cmd(sessn,"sense:strain:excitation:state ON,(@10000:10007)");

/* set the data FIFO format for the command module to 64-bit */
errStatus=hpe1422_cmd(sessn,"FORM PACK,64");

/* measure the excitation voltage at each bridge. The values go to the
   FIFO. We’ll put them in their own array */
errStatus=hpe1422_cmdInt16_Q(sessn,"meas:volt:excitation? (@10000:10007)", &result16);

/* read the values from the FIFO. count returns number actually read */
errStatus=hpe1422_readFifo_Q(sessn, 0, 512, exc_array, &count);

/* measure the unstrained bridge voltage at each bridge. The values go to the
   FIFO. We’ll put them in their own array */
errStatus=hpe1422_cmdInt16_Q(sessn,"meas:volt:unstrained? (@10000:10007)", &result16);

/* read the values from the FIFO. count returns number actually read */
errStatus=hpe1422_readFifo_Q(sessn, 0, 512, uns_array, &count);

/* set up the scan list to include the strain channels to measure bridge outputs */
errStatus=hpe1422_cmd(sessn,"route:sequence:define (@10000:10007)");

/* set up the trigger system to make one scan for each trigger.
   Note that the default is one scan per trigger and trigger source
   is TIMer, so we only have to INITiate the trigger system to
   take readings. */
errStatus=hpe1422_cmd(sessn,"trigger:count 1"); /* *RST default */
errStatus=hpe1422_cmd(sessn,"trigger:source TIMer"); /* *RST default */
errStatus=hpe1422_cmd(sessn,"arm:source IMMediate"); /* *RST default */

/* set up the sample timer. This controls the channel to channel scan
   rate and can be important when channels need more than the default
   40 microsecond sample time. */
errStatus=hpe1422_cmd(sessn,"sample:timer 40E-6"); /* *RST default */

/* INITiate the trigger system to execute a measurement scan */
errStatus=hpe1422_cmd(sessn,"INIT:IMMediate");

/* retrieve readings from FIFO. Notice that for each scan, we read the
   number of values in the FIFO (sens:data:fifo:count?), then apply
   that value to control the number of readings we read with the
   hpe1422_readFifo_Q() function. For continuous data aquisition, see
   Chapter 4 of the manual under "Reading Fifo Data". */
errStatus=hpe1422_cmd(sessn,"INIT:IMMediate");
   
/* find the number of readings present in the FIFO */
errStatus=hpe1422_cmdInt32_Q(sessn,"sense:data:fifo:count?",&result32);

/* read the values from the FIFO. count returns number actually read */
errStatus=hpe1422_readFifo_Q(sessn, result32, 512, brdg_array, &count);

/********************** Strain post-processing ***********************
 *                                                                   *
 *  here you take the values for excitation (exc_array), unstrained  *
 *  (uns_array), bridge output values (brdg_array), and gage foactor *
 *  and calculate individual strain values for each channel using    *
 *  your own equations.                                              *
 *                                                                   *
 *********************************************************************/
86 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



llel 
 
 
time. 

inal 

he 

e 
 

use 
hen 

 
ram 

only 

stor 

Real 

 
 

ile 
.

Verifying Correct Bridge Completion (Shunt Cal)
You’re probably familiar with verifying your bridge configurations and 
connections by inserting a known resistance (shunt cal resistor) in para
with one leg of the bridge to imbalance it by a predictable amount. The
HP E1529A provides a single internal 50KΩ shunt cal resistor that can be
programmatically connected to each of the 32 channels, 1 channel at a 
The HP E1529A also provides the same connection capability for an 
optional external user supplied shunt cal resistor. The user’s shunt cal 
resistor can be connected via the front panel "Shunt Cal Resistor" term
block. See Figure 3-19.

For the following discussion, refer to Figure 3-10 through Figure 3-12. T
OUTPut:SHUNt:SOURce  INT | EXT,(@<ch_list>) selects either the 
INTernal (built-in) or EXTernal (user supplied) shunt cal resistor. Use th
OUTput:SHUNt ON | OFF,(@<ch_list>) command to actually connect the
shunt cal resistor to the bridge to be tested. For OUTP:SHUN, <ch_list> 
may specify only a single channel on any one HP E1529A. This is beca
a single resistor is used to shunt each of an HP E1529As 32 channels. W
the command is sent to connect another channel, the previously closed
channel is opened. To perform shunt cal on multiple channels, your prog
will have to enter a loop to connect the shunt cal resistor to sequential 
channels and read the result from the shunted channel. Generally you 
need to send OUTP:SHUN OFF to open the last channel closed on a 
particular HP E1529A.For quarter bridge completion, the shunt cal resi
is connected locally (on-board the HP E1529A). For both half and full 
bridge completion, the shunt cal resistor is connected remotely via the -
and +Real terminals. The switches that route Real are automatically 
controlled by the bridge configuration commands 
[SENSe:]FUNCtion:Q120, [SENSe:]FUNCtion:Q350, 
[SENSe:]FUNCtion:USER, [SENSe:]FUNCtion:HBEN, 
[SENSe:]FUNCtion:FBEN, and [SENSe:]STRain:BRIDge[:TYPE].

See Figure 3-20 for a general shunt cal programming sequence. A C++
example source file (shuntcal.cpp) is available in the VXIplug&play help
file and on the CD supplied with your instrument. View the readme.txt f
provided with the VXIplug&play driver for example program file location

Figure 3-19. User Shunt Cal Resistor Connection
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  87Chapter 3



Figure 3-20. Performing Shunt Calibration

Set up the analog input Scan List to
measure un-shunted channels

Measure unstrained bridge output
voltages and send to EU routines

Send gage factors to
channel EU routines

SENSe:STRain:GFACtor

MEASure:VOLTage:UNSTrained?

ROUTe:SEQuence:DEFine (@<ch_list>)

Measure bridge excitation
voltages and get from FIFO

MEASure:VOLTage:EXCitation?/SENSe:DATA:FIFO?

Measure unstrained bridge output
voltages and get from FIFO

MEASure:VOLTage:UNSTrained?/SENSe:DATA:FIFO?

To convert readings to
Engineering Units of strain

SENSe:FUNCtion:STRain:<bridge_type>. Also sets
bridge config switches and turns on excitation V

Set up Trigger System to scan
strain bridge channel

TRIG:SOURce IMM

Initiate Trigger System INITiate[:IMMediate]

Retrieve un-shunted strain
readings from FIFO

SENSe:DATA:FIFO?

Select INTernal or EXTernal
shunt resistor

OUTPut:SHUNt:SOURce

Set up the analog input Scan List to
measure single shunted channel

ROUTe:SEQuence:DEFine (@<shunt_channel>)

Turn on shunt resistor
to slected channel

OUTPut:SHUNt:STATe ON (@<shunt_channel>)

Initiate Trigger System
(measure shunted strain channel)

INITiate[:IMMediate]

Retrieve shunted strain
reading from FIFO

SENSe:DATA:FIFO?
88 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



 

ts to 

ts to 

idge 

in 
 

 

Built-in Strain Conversion Equations
When you use the HP E1422A’s built-in strain conversion 
(SENSe:FUNCtion:STRain:<bridge_type> <range>,(@<ch_list>)), the
following equations are used to convert voltage to strain.

Full Bridge Equation
(bridge_type=FBEN)

This equation is used by the HP E1422A to convert bridge measuremen
Engineering Units of Strain for channels specified in the command 
SENSe:FUNCtion:STRain:FBEN <range>,(@<ch_list>).

where: Vmeasured = measured voltage value
Vexcitation = excitation voltage
Vunstrained = unstrained voltage
gFactor = gage factor

Half Bridge Equation
(bridge_type=HBEN)

This equation is used by the HP E1422A to convert bridge measuremen
Engineering Units of Strain for channels specified in the command 
SENSe:FUNCtion:STRain:HBEN <range>,(@<ch_list>).

where: Vmeasured = measured voltage value
Vexcitation = excitation voltage
Vunstrained = unstrained voltage
gFactor = gage factor

Quarter Bridge Equation
(bridge_type=Q120,

Q350, or USER)

This second-order equation is the used by the HP E1422A to convert br
measurements to Engineering Units of Strain for on-board strain SCP 
channels only. Because HP E1529As can expand the HP E1422As stra
channel count to 512, use of this non-linear strain conversion equation
would require too much HP E1422A memory. Instead, a linear 
approximation of this equation is used. See below. For the following 
equations, Vi = bridge output while strained, Vu = bridge output unstrained,
and Ve = excitation voltage at the bridge.

Quarter Bridge Equation for Strain SCPs only

Quarter Bridge Equation for HP E1529A only

Strain Vmeasured Vunstrained–( ) gFactor Vexcitation×( )⁄=

Strain 2 Vmeasured Vunstrained–( ) gFactor Vexcitation×( )⁄×=

Strain
4V– r

GF 1 2Vr+( )
-------------------------------= WhereVr

Vi Vu–

Ve
-----------------=

Strain a2Vi
2

a1Vi a0+ +=
Programming the HP E1422A & HP E1529A for Remote Strain Measurement  89Chapter 3



Error Analysis

Figure 3-21 compares the non-linear quarter bridge equation used for strain 
SCPs with the linear approximation used with the HP E1529A. Notice that 
while the error is independent of excitation voltage and unstrained voltage, 
error is quite sensitive to gage factor.

Where a2
8

GF Ve
2×

---------------------,   a1

4 4Vu Ve+( )–

GF Ve
2×

---------------------------------,   a0

4 Vu
2 VeVu+( )

GF Ve
2×

---------------------------------===

Figure 3-21. Error of Quarter Bridge Linear Approximation

Error vs Delta Strain

-1000

0

1000

2000

3000

4000

5000

6000

-100000 -80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000

Delta Strain in Micro Strain

GF=1

GF=2

GF=5
90 Programming the HP E1422A & HP E1529A for Remote Strain Measurement  Chapter 3



ing 

ure 
ains:

2
 93
93
93
 94
 94
  94
  98
  99
102
103
103
05
13

113
113
114
17

117
18
19
20
20
21
21

 122
122
123
 123
123
25

26
  127
28

129
 130
130
Chapter 4

Programming the HP E1422A for
Data Acquisition and Control

About This Chapter The focus in this chapter is to show the HP E1422’s general programm
model. The programming model is basically the sequence of SCPI 
commands your application program will send to the HP E1422 to config
it to execute the defined Scan List and/or algorithms. This chapter cont

• Overview of the HP E1422A Multifunction DAC Module  . . . . . .    9
Multifunction DAC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

Flexible Signal Conditioning for Input and Output  . . . . . . . .    
Remote Multiplexing and Signal Conditioning  . . . . . . . . . . .    
Programmable Signal Conditioning and EU Conversion . . . .   
Scan List and/or ’C’ Language Control Programming . . . . . .   
Runtime Remote Scan Verification. . . . . . . . . . . . . . . . . . . . .  

Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
• Executing the Programming Model  . . . . . . . . . . . . . . . . . . . . . . . .  

Programming Overview Diagram. . . . . . . . . . . . . . . . . . . . . . .    
-- Setting up Analog Input and Output Channels . . . . . . . . . . . . .    

Configuring Programmable Analog SCP Parameters . . . . . .    
Linking Input Channels to EU Conversion. . . . . . . . . . . . . .    1
Linking Output Channels to Functions . . . . . . . . . . . . . . . . .    1

-- Setting up Digital Input and Output Channels  . . . . . . . . . . . . .    
Setting up Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
Setting up Digital Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . .    

-- Performing Channel Calibration (Important!)  . . . . . . . . . . . . .    1
Calibrationg the HP E1422A  . . . . . . . . . . . . . . . . . . . . . . . .    
Calibrating Remote Signal Conditioning Units  . . . . . . . . . .    1

-- Defining an Analog Input Scan List (ROUT:SEQ:DEF) . . . . .    1
-- Defining C Language Algorithms. . . . . . . . . . . . . . . . . . . . . . .    1

Global variable definition . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
Algorithm definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
Pre-setting Algorithm Variables  . . . . . . . . . . . . . . . . . . . . . .    1

-- Defining Data Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
Specifying the Data Format  . . . . . . . . . . . . . . . . . . . . . . . . .    
Selecting the FIFO Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . .    

-- Setting up the Trigger System. . . . . . . . . . . . . . . . . . . . . . . . . .   
Arm and Trigger Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . .    
Programming the Trigger Timer . . . . . . . . . . . . . . . . . . . . . .    1

-- INITiating the Module/Starting Scanning and Algorithms. . . .    1
The Operating Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-- Reading Running Algorithm Values . . . . . . . . . . . . . . . . . . . . .    1
Reading CVT Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
Reading FIFO Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
Which FIFO Mode?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
Programming the HP E1422A for Data Acquisition and Control  91Chapter 4



  134
35
  137
 143
 143
 145
 148
  150
151
 152

its 'C' 
Reading Algorithm Variables Directly . . . . . . . . . . . . . . . . .    132
-- Modifying Running Algorithm Variables . . . . . . . . . . . . . . . . .    132

Updating the Algorithm Variables and Coefficients . . . . . . .    132
Enabling and Disabling Algorithms . . . . . . . . . . . . . . . . . . .    133
Setting Algorithm Execution Frequency. . . . . . . . . . . . . . . .    134

• Example SCPI Command Sequence . . . . . . . . . . . . . . . . . . . . . . .  
• Example VXIplug&play Driver Function Sequence  . . . . . . . . . .    1
• Using the Status System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
• HP E1422 Background Operation. . . . . . . . . . . . . . . . . . . . . . . . .   
• Updating the Status System and VXIbus Interrupts . . . . . . . . . . .   
• Creating and Loading Custom EU Conversion Tables . . . . . . . . .   
• Compensating for System Offsets. . . . . . . . . . . . . . . . . . . . . . . . .   
• Detecting Open Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
• More On Auto Ranging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
• Settling Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

Overview of the HP E1422A Multifunction DAC Module
This section describes how the HP E1422 gathers input data, executes 
algorithms, and sends its output data. Figure 4-1 shows a simplified 
92 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



functional block diagram.

Multifunction DAC? The HP E1422 is a complete data acqusition and control system on a single 
VXI card. It is multifunction because it uses the Signal Conditioning 
Plug-on(SCP) concept whereby you can mix and match your analog 
input/output and digital input/output channels to meet various application 
needs. It can be self-contained because it has local intelligence to permit the 
card to run stand-alone with very little interaction required from the 
supervisory computer.

Flexible Signal
Conditioning for Input

and Output

The HP E1422 has eight SCP positions with each SCP position capable of 
addressing up to 8 channels of input or 8 channels of output for a total of 64 
channels. These 64 channels are know as the on-board channels. The 8 SCP 
slots can be used for any of the twenty-plus analog/digital SCP’s available 
for the E1422 which cover most data acquisition and control needs. 

Remote Multiplexing and
Signal Conditioning

In addition, each SCP slot that contains an HP E1539A SCP can operate two 
Remote Signal Conditioning Units (RSCUs) that each externally 
multiplexes up-to 32 channels. These channels are known as remote 
channels because they are multiplexed remotely to the HP E1422. So, with 
32 channels per RSCU and 16 RSCUs, the HP E1422 can make analog 

Figure 4-1. Simplified Functional Block Diagram
Programming the HP E1422A for Data Acquisition and Control  93Chapter 4



d 
f 

e or 
s and 

e 
e 

A 
n 
re at 

gger 
ycle 

y any 

tly 
ture, 
nels 
), 

y ’C’ 
' 

 
any 
ere 
measurements on 512 remote channels. The upper left corner of Figure 
4-1shows how Remote Signal Conditioning Units fit in.

Programmable Signal
Conditioning and EU

Conversion

You configure the input and output SCP’s with the SCPI and/or 
VXIplug&play programming. Analog SCP’s are measured with the E1422’s 
A/D. Configuring the analog SCP’s includes specifying what type of 
Engineering Unit (EU) conversion you want for each analog input channel. 
For example, one channel may require a type T thermocouple conversion 
and another may be a resistance measurement. The on-board Digital Signal 
Processor(DSP) converts the voltage read across the analog input channel 
and applies a high-speed conversion which results in temperature, 
resistance, etc. Digital input SCP’s perform their own conversions as 
configured by the SCPI language.

Scan List and/or ’C’
Language Control

Programming

The HP E1422 can be used as either a conventional Scan List controlled data 
acquisition unit with analog measurements automatically buffered and 
available to the  supervisory computer, or the HP E1422 can execute its own 
internal ’C’ language algorithms which can perform data acquisition an
control and pass values to the supervisory computor when required. O
course both modes can be used for example when many analog data 
acquisition channels need to be measured using the Scan List, and on
more algorithms are needed to perhaps monitor some of the data point
make control decisions.

Runtime Remote Scan
Verification

The HP E1422A provides a method to verify that remote channels in th
scan list you define in algorithms or with the ROUTe:SEQuence DEFin
command are succesfully scanned in each RSCU. Special algorithm 
variables are available to check the operating status of each HP E1539
main channel. This allows you to guard against an RSCU failing to sca
remote channels because of a signal cable disconnect or a power failu
the RSCU.

Operational
Overview

When the Trigger System is configured and either generates its own tri
or accepts a trigger from an external source, an instrument operation c
begins. A simplified description of cycle follows.

Acquire Input Values All digital input SCP's latch their current input state and the A/D starts 
scanning the analog channels specified in the Scan List with the 
ROUTe:SEQuence:DEFine command or analog channels referenced b
’C’ algorithms. All measurement data as seen by the ’C’ algorithms is 
represented as 32-bit real numbers even if the input channel is inheren
integer (digital byte/word). The EU-converted numbers such as tempera
strain, resistance, volts, state, frequency, etc. when from Scan List chan
(ROUT:SEQ:DEF) is stored by default in the Current Value Table (CVT
and the FIFO reading buffer. Values from analog channels referenced b
algorithms are stored in an Input Buffer and later accessed by those 'C
algorithms executing on the E1422 card.

Analog input values from channels in the Scan List, stored in the FIFO
and/or CVT can be read from the HP E1422 without creating or running 
’C’ algorithms. This makes for easy traditional analog data acqusition wh
no control aspect is required.
94 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



Start Algorithms Approximately 2000 lines of user-written ’C’ code can be downloaded into 
the E1422’s memory and can be split among up to 32 algorithms. HP refers 
to these as algorithms because an algorithm is a step-by-step procedure for 
solving some problem or accomplishing some end. Though the 
documentation continues to refer to the ’C’ code as algorithms, you may 
think in traditional terms as each algorithm representing a ’C’ function with 
a main() program which calls them.

The user-written ’C’ algorithms execute after all analog/digital inputs have 
been stored in the Input Buffer. The ’C’ code accesses the measurement data 
like constants with the names of I100-I163 (for on-board channels) and 
I10000-I15731 (for remote channels) representing the 32-bit real 
EU-converted numbers. As seen in Figure 3-1, the algorithms have access to 
both local and global variables and arrays. The I-variables are inherently 
global and accessible by any algorithm. Local variables are only visible to 
the particular algorithm (just like in ’C’ functions). Declared global variables 
can be shared by any algorithm. 

Communicating with
Algorithms

Your application program can read or write any local or global variable in 
any algorithm by using SCPI syntax that actually identifies the variable by 
name, but a more efficient means of reading data is available through the 
E1422’s FIFO and Current Value Table(CVT). As seen in Figure 3-1, any 
algorithm can write any expression or constant to the FIFO/CVT. Your 
application can then read the FIFO/CVT to characterize what’s happening 
inside the E1422 and to provide an operator view of any input/output 
channel, variable, or constant. 

Algorithms Control
Output Values

Output SCP’s derive their channel values from O-variables that are written 
by the algorithms. O100-O163 are read/write global variables that are read 
after all algorithms have finished executing. The 32-bit real values are 
converted to the appropriate units as defined by the SCPI configuration 
commands and written to the various output SCP’s by channel number.

Figure 4-2. Instrument Operation Cycle Phases
Programming the HP E1422A for Data Acquisition and Control  95Chapter 4



Detailed Instrument
Operation Cycle

Figure 4-2 illustrates the timing of all these operations and describes the 
E1422’s input-update-execute algorithms-output phases. This cycle-based 
design is desirable because it results in deterministic operation of the E1422. 
That is, the input channels are always scanned, and the output channels are 
always written at pre-defined intervals. Note too that any number of input 
channels or output channels are accessible by any of up to 32 user-written 
algorithms. The algorithms are named ALG1-ALG32 and execute in 
numerical order. 

In Phase 1, all input channels specified in the ROUTe:SEQuence:DEFine 
command and/or referenced in downloaded algorithms are scanned.

Phase 1A is for Runtime Remote Scan Verification and is optional. When 
one or more special scan status variables (S1xx) are included in an 
algorithm, this time is required to evaluate the scan status of each 
HP E1539A SCP channel reference by a status variable. The time required 
is 230µS + 40µS * (number of S1xx vars referenced). If no status variables 
are referenced in any algorithms, then Phase 1A is not executed.

Notice the Update Window (Phase 2) illustrated in Figure 4-2. This window 
has a user-specified length and is used to accept and make changes to local 
and global variables from the supervisory computer. Up to 512 scalar or 
array changes can be made while executing algorithms. Special care was 
taken to make sure all changes take place at the same time so that any 
particular algorithm or group of algorithms all operate on the new changes 
at a user-specified time. This does not mean that all scalar and array changes 
have to be received during one cycle to become effective at the next cycle. 
On the contrary, it may take a number of cycles to download new values, 
especially when trying to re-write 1024 element arrays and especially when 
the trigger cycle time is very short. 

There are multiple times between the base triggers where scalar and array 
changes can be accepted from the supervisory computer, and these changes 
are kept in a holding buffer until the supervisory computer instructs the 
changes to take effect. These changes then take place during the Update 
window and take effect BEFORE algorithms start executing. The 
"do-update-now" signal can be sent by command(ALG:UPD) or by a change 
in a digital input state(ALG:UPD:CHAN). In either case, the programmer 
has control over when the new changes take effect.

The E1422’s ability to execute programs directly on the card and its fast 
execution speed give the programmer real-time response to changing 
conditions. And, programming the card has been made very easy to 
understand. HP chose C as the language used to write user programs since 
that language is already considered the industry standard. Choosing C 
allows you to write algorithms on PC’s or UNIX workstations that have C 
compilers, so you can debug algorithms before execution on the card. The 
E1422 also provides good debugging tools that permit you to determine 
worst-case execution speed, monitor variables while running, and 
selectively enable/disable any of the E1422’s 32 algorithms. 

HP created a limited and simplified version of C since most applications 
need only basic operations: add, subtract, multiply, divide, scalar variables, 
arrays, and programming constructs. The programming constructs are 
96 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



limited to if-then-else to allow conditional evaluation and response to input 
changes. Since all algorithms have an opportunity to execute after each 
time-base trigger, the if-then-else constructs permit conditional skipping of 
cycle intervals so that some code segments or algorithms can execute at 
multiples of the cycle time instead of every cycle.

Looping constructs such as for or while are purposely left out of the 
language so that user programs are deterministic. Note that looping is not 
really needed for most applications since the cycle interval execution (via 
the trigger system) of every algorithm has inherent repeat looping. With no 
language looping constructs, the HP E1422’s C compiler can perform a 
worst-case branch analysis of user programs and return the execution time 
for determining the minimum time-base interval. Making this timing query 
available allows the programmer to know exactly how much time may be 
required to execute any/all phases before attempting to set up physical test 
conditions. 

Note the darker shaded portion at the end of the Execute Algorithms Phase 
in Figure 4-2. The conditional execution of code can cause the length of this 
phase to move back and forth like an accordion. This can cause undesirable 
output jitter when the beginning of the output phase starts immediately after 
the last user algorithm executes. The HP E1422’s design allows the user to 
specify when output signals begin relative to the start of the trigger cycle. 
Outputs then always occur at the same time, every time.

The programming task is further made easy with this design because all the 
difficult structure of handling input and output channels is done 
automatically. This is not true of many other products that may have several 
ways to acquire measurement data or write results to its I/O channels. When 
the E1422’s user-written C algorithms are compiled, input channels and 
output channels are detected in the algorithms and are automatically 
grouped and configured for the Input and Output phases as seen in Figure 
4-2. Each algorithm simply accesses input channels as variables and writes 
to output channels as variables. The rest is handled and optimized by the 
Input and Output phases. You’re left to think of solving your application in 
terms of input and output values variables rather than worrying about how 
to deal with each SCP’s differences.
Programming the HP E1422A for Data Acquisition and Control  97Chapter 4



w 

rithm 
turn 

g up 
Programming Model
You configure, start, stop, and communicate with the HP E1422 using its 
SCPI commands and/or VXIplug&play driver functions. The module can be 
in one of two states; either the "idle" state, or the "running" state. The 
INITiate[:IMMediate] command moves the module from the "idle" state to 
the "running" state. We will call these two states "before INIT", and "after 
INIT". See Figure 4-3 for the following discussion.

Before INIT the module is in the Trigger Idle State and its DSP chip (the 
on-board control processor) is ready to accept virtually any of its SCPI or 
Common commands. At this point, you will send it commands that 
configure SCPs, link input channels to EU conversions, configure Remote 
Signal Conditioning Units, configure digital input and output channels, 
define a Scan List, configure the trigger system, and define control 
algorithms.

After INIT (and with trigger events occurring), the DSP is busy measuring 
input channels, executing algorithm code, sending internal algorithm values 
to the CVT, and updating control outputs. To insulate the DSP from 
commands that would interrupt its measurement scanning and/or algorithm 
execution, the HP E1422’s driver disallows execution of most SCPI 
commands and VXIplug&play functions after INIT. The driver does allo
certain commands that make sense while the module is scanning and 
running algorithms. These are the commands that read and update algo
variables, retrieve data aquisition values from the CVT and FIFO, and re
Status System values. The Command Reference Section (Chapter 6) 
specifies whether a command is accepted before or after INIT.

The next section in this chapter ("Executing the Programming Model") 
shows the programming sequence that should be followed when settin
the HP E1422 to make measurement scans and/or run algorithms.
98 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



’s 

and. 

").
 Executing the Programming Model
This section shows the sequence of programming steps that should be used 
for the HP E1422. Within each step, most of the available choices are shown 
using command sequence examples, with further details available in the 
Command Reference Chapter 6.

 IMPORTANT! Most programming difficulties can be resolved by you if you know what
wrong. It is very important while developing your application that you 
execute the SYSTem:ERRor? command after each programming comm
This is the only way you will know if there is a programming error. 
SYST:ERR? returns an error number and description (or +0, "No Error

Before INIT

After INIT

Commands Accepted:

Commands Accepted:

Trigger Idle
State

Waiting for
Trigger State

Input,
Execute Algs,

Output

*RST or ABORT?

no

no

yes

yes

Trig Count
Exhausted?

All commands exept:
*TRG, TRIGGER, and ALG:UPD:CHAN

INITiate[:IMM]

Power-On

*RST
ABORT
Most of ALG subsystem
ARM[:IMM]
FETCH?
FORMAT
SENSe:DATA ...
STATus ...
SYSTem ...
*TRG & TRIGger[:IMMediate] (if TRIG:SOUR is HOLD)

TIMer or other
trigger event

Figure 4-3. Module States
Programming the HP E1422A for Data Acquisition and Control  99Chapter 4



 

Power-on and *RST
Default Settings

Some of the programming operations that follow may already be set after 
Power-on or after a *RST command. Where these default settings coincide 
with the configuration settings you require, you do not need to execute a 
command to set them. These are the default settings:

• No algorithms defined
• No channels defined in channel lists
• Programmable SCPs configured to their Power-on defaults

 (see individual SCP User’s Manuals)
• All analog input channels linked to EU conversion for voltage
• All analog output channels ready to take values from an algorithm
• All digital I/O channels set to input static digital state
• ARM:SOURce IMMediate
• SAMPle:TIMer 40E-6 (40µsec)
• TRIGger:SOURce TIMer
• TRIGger:COUNt 1 (note that this default was chosen to 

make testing data aquisition scan list easier. For algorithm operation, 
you will probably want to change the count to INFinite.)

• TRIGer:TIMer .010 (10 msec)
• FORMat ASC,7 (ASCII)
• SENSe:DATA:FIFO:MODE BLOCking

Figure 4-4 provides a quick reference to the Programming model. Refer to 
this, together with the “Programming Overview Diagram” to keep an 
overview of the HP E1422 SCPI programming sequence. Again, where
default settings are what you want, you can skip that configuration step
100 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



.

Step 1

Step 2

Step 3

Step 4

Step 5

Set up SCP & RSCU Amps, Filters, and
Measurement Excitation Sources

Link Engineering Units (Functions)
to Analog Input Channels

Set up Digital I/O Channels

Calibrate Channel Set-up
(after 1 hour warm-up)

Define Scan List

Set up Trigger System

Select FIFO Mode

Select Data Format

Define Global Variables
(optional)

Set up Algorithm(s) and
Preset Algorithm Variables

Initiate Trigger System

Retrieve Data

Modify Algorithm Variables ALG:ARRay, ALG:SCALar,
ALG:STAT, ALG:SCAN:RATio, ALG:UPD

SENS:DATA:FIFO: ..., SENS:DATA:CVT?
ALG:SCAL?, and ALG:ARR? commands

INITiate command

ALG:DEF, ALG:ARRay, ALG:SCALar,
ALG:SCAN:RATio, ALG:UPDate

ALG:DEF "GLOBALS", ...
command

[SENSe:]DATA:FIFO:MODE command

FORMat command

ARM:SOUR, TRIG:SOUR, TRIG:COUN,
TRIG:TIMer commands

*CAL?, or CAL:SETup command

ROUTe:SEQuence:DEFine command

INP: ..., OUTP: ..., [SENSe:] ...,SOUR: ...

[SENSe:]FUNC: ... commands

INP: ..., OUTP: ... commands

Trigger events execute Scan List & algs

Power On or *RST

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Figure 4-4. Programming Sequence
Programming the HP E1422A for Data Acquisition and Control  101Chapter 4



Programming Overview Diagram
102 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



P’s 
n 

5. 

s is 
 not 
nal 

 
he 
 

s an 
lts 
nge.

nel 
tion. 

nels 
Setting up Analog Input and Output Channels
This section covers configuring input and output channels to provide the 
measurement values and output characteristics that your algorithms need to 
operate. 

Configuring
Programmable

Analog SCP
Parameters

This step applies only to programmable Signal Conditioning Plug-ons such 
as the HP E1503 Programmable Amplifier/Filter SCP, the HP E1505 
Current Source SCP, the HP E1510 Sample and Hold SCP, the HP E1511 
Transient Strain SCP, and Remote Signal Conditioning Units (RSCUs, like 
the HP E1529A Remote Strain Conditioning Unit). See the particular SC
User’s manual to determine the gain, filter cutoff frequency, or excitatio
amplitude selections that it may provide. See “Programming the 
HP E1422A & HP E1529A for Remote Strain Measurement” on page 5
for information on the HP E1529A’s programmable settings.

Setting SCP Gains An important thing to understand about input amplifier SCPs and RSCU
that given a fixed input value at a channel, changes in channel gain do
change the value returned from that channel. The DSP chip (Digital Sig
Processor) keeps track of SCP gain and Range Amplifier settings, and
"calculates" a value that reflects the signal level at the input terminal. T
only time this in not true is when the SCP gain chosen would cause the
output of the SCP amplifier to be too great for the selected A/D range. A
example; with SCP gain set to 64, an input signal greater than ±0.25 vo
would cause an over-range reading even with the A/D set to its 16 volt ra

The gain command for SCPs with programmable amplifiers is:

INPut:GAIN  <gain>,(@<ch_list>) to select SCP channel gain.

The gain selections provided by the SCP can be assigned to any chan
individually or in groups. Send a separate command for each gain selec
An example for the HP E1503 programmable Amp&Filter SCP:

To set the SCP gain to 8 for channels 0, 4, 6, and 10 through 19 send:

INP:GAIN 8,(@100,104,106,110:119)

To set the SCP gain to 16 for channels 0 through 15, and to 64 for chan
16 through 23 send:

INP:GAIN 16,(@100:115)
INP:GAIN 64,(@116:123)

or to combine into a single command message:

INP:GAIN 16,(@100:115);GAIN  64,(@116:123)

Setting Filter
 Cutoff Frequency

The commands for programmable filters are:

INPut:FILTer[:LPASs]:FREQuency  <cutoff_freq>,(@<ch_list>) to 
select cutoff frequency
Programming the HP E1422A for Data Acquisition and Control  103Chapter 4



 

INPut:FILTer[:LPASs][:STATe] ON | OFF,(@<ch_list>) to enable or 
disable input filtering

The cutoff frequency selections provided by the SCP can be assigned to any 
channel individually or in groups. Send a separate command for each 
frequency selection. For example:

To set 10 Hz cutoff for channels 0, 4, 6, and 10 through 19 send:

INP:FILT:FREQ 10,(@100,104,106,110:119)

To set 10 Hz cutoff for channels 0 through 15, and 100 Hz cutoff for 
channels 16 through 23 send:

INP:FILT:FREQ 10,(@100:115)
INP:FILT:FREQ 100,(@116:123)

or to combine into a single command message

INP:FILT:FREQ 10,(@100:115);FREQ  100,(@116:123)

By default (after *RST or at power-on) the filters are enabled. To disable or 
re-enable individual (or all) channels, use the INP:FILT ON | OFF, 
(@<ch_list>) command. For example, to program all but a few filters on, 
send:

INP:FILT:STAT ON,(@100:163) all channel’s filters on (same as 
at *RST)

INP:FILT:STAT OFF,(@100, 123,146,163) only channels 0, 23, 46, and 63
OFF

Setting the HP E1505
Current Source SCP and

HP E1518 Resistance
Measurement SCP

The Current Source and Resistance Measurement SCPs supplie excitation 
current for resistance type measurements. These include resistance, and 
temperature measurements using resistance temperature sensors. The 
commands to control Current Source SCPs are:
OUTPut:CURRent:AMPLitude  <amplitude>,(@<ch_list>) and 
OUTPut:CURRent[:STATe] <enable>.

• The amplitude parameter sets the current output level. It is specified in 
units of Amps DC and for the HP E1505/E1518 SCP can take on the 
values 30e-6 (or MIN), and 488e-6 (or MAX). Select 488µA for 
measuring resistances of less than 8,000 Ohms. Select 30µA for 
resistances of 8,000 Ohms and above.

• The ch_list parameter specifies the Current Source SCP channels that 
will be set.

To set channels 0 through 9 to output 30 µA and channels 10 through 19 to 
output 488 µA:

OUTP:CURR 30e-6,(@100:109)
OUTP:CURR 488e-6,(@110:119) separate command per output 

level

or to combine into a single command message:
104 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



nt 
sor 
OUTP:CURR 30e-6,(@100:109);CURR  488e-6,(@110:119)

 NOTE The OUTPut:CURRent:AMPLitude command is only for programming 
excitation current used in resistance measurement configurations. It is does 
not program output DAC SCPs like the HP E1532.

Setting the HP E1511
Strain Bridge SCP
Excitation Voltage

The HP E1511 Strain Bridge Completion SCP has a programmable bridge 
excitation voltage source. The command to control the excitation supply is 
OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>)

• The <amplitude> parameter can specify 0, 1, 2, 5, or 10 volts for the 
HP E1511’s excitation voltage.

• The <ch_list> parameter specifies the SCP and bridge channel 
excitation supply that will be programmed. There are four excitation 
supplies in each HP E1511.

To set the excitation supplies for channels 0 through 3 to output 2 volts:

OUTP:VOLT:AMPL 2,(@100:103)

 NOTE The OUTPut:VOLTage:AMPLitude command is only for programming 
excitation voltage used measurement configurations. It is does not program 
output DAC SCPs like the HP E1531.

Linking Input
Channels to EU

Conversion

This step links each of the module’s channels to a specific measureme
type. For analog input channels this "tells" the on-board control proces
which EU conversion to apply to the value read on any channel. The 
processor is creating a list of conversion types vs. channel numbers.
The commands for linking EU conversion to channels are:

[SENSe:]FUNCtion:RESistance  <excite_current>,[<range>,] 
(@<ch_list>) for resistance measurements

[SENSe:]FUNCtion:STRain:…  <excite_current>,[<range>,] 
(@<ch_list>) for strain bridge measurements

[SENSe:]FUNCtion:TEMPerature  <type>,<sub_type>,[<range>,] 
(@<ch_list>) for temperature measurements with thermocouples, 
thermistors, or RTDs

[SENSe:]FUNCtion:VOLTage  <range>,(@<ch_list>) for voltage 
measurements

[SENSe:]FUNCtion:CUSTom  <range>,(@<ch_list>) for custom EU 
Programming the HP E1422A for Data Acquisition and Control  105Chapter 4



conversions.

 NOTE At Power-on and after *RST, the default EU Conversion is autorange 
voltage for all 64 channels.

Linking Voltage
Measurements

To link channels to the voltage conversion send the 
[SENSe:]FUNCtion:VOLTage [<range>,] (@<ch_list>) command.

• The ch_list parameter specifies which channels to link to the voltage 
EU conversion.

• The optional range parameter can be used to choose a fixed A/D 
range. Valid values are: .0625, .25, 1, 4, 16, or AUTO. When not 
specified, the module uses auto-range (AUTO).

To set channels 0 through 15 to measure voltage using auto-range:

SENS:FUNC:VOLT AUTO,(@100:115)
SENS:FUNC:VOLT AUTO,(@10000:10131) first 64 RSCU channels

To set channels 16 and 24 to the 16 volt range, and 32 through 47 to the 
.0625 volt range:

SENS:FUNC:VOLT 16,(@116,124)
SENS:FUNC:VOLT .625,(@132:147) must send a command per range

or to send both commands in a single command message:

SENS:FUNC:VOLT 16,(@116,124);VOLT  .0625,(@123:147)

 NOTE When using manual range in combination with amplifier SCPs, the EU 
conversion will try to return readings which reflect the value of the input 
signal. However, it is up to you to choose range values that will provide good 
measurement performance (avoiding over-ranges and selecting ranges that 
provide good resolution based on the input signal). In general, 
measurements can be made at full speed using auto-range. Auto-range will 
choose the optimum A/D range for the amplified signal level. 

Linking Resistance
Measurements

To link channels to the resistance EU conversion send the 
[SENSe:]FUNCtion:RESistance  
<excite_current>,[<range>,](@<ch_list>) command.

Resistance measurements assume that there is at least one Current Source 
SCP installed (eight current sources per SCP). See Figure 4-5
106 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



.

• The excite_current parameter is used only to tell the EU conversion 
what the Current Source SCP channel is now set to. Excite_current is 
specified in Amps DC and the choices for the HP E1505 SCP are 
30e-6 (or MIN) and 488e-6 (or MAX). Select 488µA for measuring 
resistances of less than 8,000 Ohms. Select 30µA for resistances of 
8,000 Ohms and above.

• The optional range parameter can be used to choose a fixed A/D 
range. When not specified (defaulted), the module uses auto-range.

• The ch_list parameter specifies which channel(s) to link to the 
resistance EU conversion. These channels will sense the voltage 
across the unknown resistance. Each can be a Current Source SCP 
channel (a two-wire resistance measurement) or a sense channel 
separate from the Current Source SCP channel (a four-wire resistance 
measurement). See Figure 4-5 for diagrams of these measurement 
connections.

 To set channels 0 through 15 to measure resistances greater than 8,000 
Ohms and set channels 16, 20, and 24 through 31 to measure resistances less 
than 8K (in this case paired to current source SCP channels 32 through 57):

OUTP:CURR:AMPL 30e-6, (@132:147)
set 16 channels to output 30µA for 8KΩ or greater resistances

SENS:FUNC:RES 30e-6, (@100:115)
link channels 0 through 15 to resistance EU conversion (8KΩ or greater)

OUTP:CURR:AMPL 488e-6, (@148,149,150:157) 
set 10 channels to output 488µA for less than 8KΩ resistances

Figure 4-5. Resistance Measurement Sensing
Programming the HP E1422A for Data Acquisition and Control  107Chapter 4



SENS:FUNC:RES 488e-6, (@116,120,124:132)
link channels 16, 20 and 24 through 32 to resistance EU conversion (less than 
8KΩ)

Linking Temperature
Measurements

To link channels to temperature EU conversion send the 
[SENSe:]FUNCtion:TEMPerature <type>, <sub_type>, 
[<range>,](@<ch_list>) command.

• The ch_list parameter specifies which channel(s) to link to the 
temperature EU conversion.

• The type parameter specifies RTD, THERmistor, or TC (for 
ThermoCouple)

• The optional range parameter can be used to choose a fixed A/D 
range. When not specified (defaulted), the module uses auto-range.

RTD and Thermistor Measurements

Temperature measurements using resistance type sensors involve all the 
same considerations as resistance measurements discussed in the previous 
section. See the discussion of Figure 4-5 in "Linking Resistance 
Measurements".

For resistance temperature measurements the sub_type parameter specifies:

• For RTDs; "85" or "92" (for 100 Ohm RTDs with 0.00385 or 0.00392 
Ohms/Ohm/Degree C temperature coefficients respectively)

• For Thermistors; 2250, 5000, or 10000 (the nominal value of these 
devices at 25 degrees C)

 NOTES 1. Resistance temperature measurements (RTDs and THERmistors) 
require the use of Current Source Signal Conditioning Plug-Ons. The 
following table shows the Current Source setting that must be used 
for the following RTDs and Thermistors:

2. sub_type values of 2250, 5000, and 10000 refer to thermistors that 
match the Omega 44000 series temperature response curve. These 
44000 series thermistors have been selected to match the curve within 
0.1 or 0.2°C.

Required Current 
Amplitude

 Temperature Sensor Types 
and Subtypes

MAX (488µA) RTD,85 | 92 and THER,2250

MIN (30µA)  THER,5000 | 10000
108 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



To set channels 0 through 15 to measure temperature using 2,250 Ohm 
thermistors (in this case paired to current source SCP channels 16 through 
31):

OUTP:CURR:AMPL 488e-6,(@116:131)
set excite current to 488µA on current SCP channels 16 through 31

SENS:FUNC:TEMP THER, 2250, (@100:115)
link channels 0 through 15 to temperature EU conversion for 2,250Ω 
thermistor

To set channels 32 through 47 to measure temperature using 10,000 Ohm 
thermistors (in this case paired to current source SCP channels 48 through 
63):

OUTP:CURR:AMPL 30e-6,(@148:163)
set excite current to 30µA on current SCP channels 48 through 63

SENS:FUNC:TEMP THER, 10000, (@132:147)
link channels 32 through 47 to temperature EU conversion for 10,000Ω 
thermistor

To set channels 48 through 63 to measure temperature using 100 Ohm RTDs 
with a TC of .00385 Ohm/Ohm/°C (in this case paired to current source SCP 
channels 32 through 47):

OUTP:CURR:AMPL 488e-6,(@132:147)
set excite current to 488µA on current SCP channels 32 through 47

SENS:FUNC:TEMP RTD, 85, (@148:163)
link channels 48 through 63 to temperature EU conversion for 100Ω RTDs with 
.00385 TC.

Thermocouple Measurements

Thermocouple measurements are voltage measurements that the EU 
conversion changes into temperature values based on the sub_type 
parameter and latest reference temperature value.

• For Thermocouples the sub_type parameter can specify CUSTom, E, 
EEXT, J, K, N, R, S, T  (CUSTom is pre-defined as Type K, no 
reference junction compensation. EEXT is the type E for extended 
temperatures of 800°F or above).

To set channels 32 through 40 to measure temperature using type E 
thermocouples:

SENS:FUNC:TEMP TC, E, (@132:140)
(see following section to configure a TC reference measurement)

Thermocouple Reference Temperature Compensation

The isothermal reference temperature is required for thermocouple 
temperature EU conversions. The Reference Temperature Register must be 
loaded with the current reference temperature before thermocouple channels 
are scanned. The Reference Temperature Register can be loaded two ways:

1. By measuring the temperature of an isothermal reference junction 
Programming the HP E1422A for Data Acquisition and Control  109Chapter 4



2’s 
ence 
 

n 
an 

 

l in 
ned. 
re 
during an input scan.

2. By supplying a constant temperature value (that of a controlled 
temperature reference junction) before a scan is started.

Setting up a Reference Temperature Measurement

This operation requires two commands, the [SENSe:]REFerence command 
and the [SENSe:]REFerence:CHANnels command.

The [SENSe:]REFerence <type>, <sub_type>,[<range>,](@<ch_list>) 
command links channels to the reference temperature EU conversion.

• The ch_list parameter specifies the sense channel that you have 
connected to the reference temperature sensor.

• The type parameter can specify THERmistor, RTD, or CUSTom. 
THER and RTD, are resistance temperature measurements and use the 
on-board 122 µA current source for excitation. CUSTom is 
pre-defined as a Type E thermocouple which has a thermally 
controlled ice point reference junction.

• The sub_type parameter must specify:

-- For RTDs; "85" or "92" (for 100 Ohm RTDs with 0.00385 or 
0.00392 Ohms/Ohm/Degree C temperature coefficients 
respectively)

-- For Thermistors; only "5000" (See previous note on page 108)

-- For CUSTom; only "1"

• The optional range parameter can be used to choose a fixed A/D 
range. When not specified (defaulted), or set to AUTO, the module 
uses auto-range.

Reference Measurement Before Thermocouple Measurements

At this point we are going to introduce you to the concept of the HP E142
Scan List. As you define each algorithm, the HP E1422 places any refer
to an analog input channel into the Scan List (this is in addition to those
channels specified by the ROUT:SEQ:DEF command, see "Defining a
Analog Input Scan List" on page 119). When you run algorithms, the sc
list tells the HP E1422 which analog channels to scan during the Input 
Phase.
 The [SENSe:]REFerence:CHANnels  (@<ref_chan>),(@<meas_ch_list>) 
is used to place the <ref_chan> channel in the scan list before the related
thermocouple measuring channels in <meas_chan>. Now when analog 
channels are scanned, the HP E1422 will include the reference channe
the scan list and will scan it before the specified thermocouples are scan
The reference measurement will be stored in the Reference Temperatu
110 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



l for 
Register. The reference temperature value is applied to the thermocouple EU 
conversions for thermcouple channel measurements that follow.

A Complete Thermocouple Measurement Command Sequence

The command sequence performs these functions:

• Configures reference temperature measurement on channel 15.

• Configures thermocouple measurements on channels 16 through 23.

• Instructs the HP E1422 to add channel 15 to the Scan List and order 
channels so channel 15 will be scanned before channels 16 through 23.

SENS:REF THER, 5000, (@115) 5K thermistor temperature for 
channel 15

SENS:FUNC:TEMP TC,J,(@116:123) Type J thermocouple 
temperature for channels 16 
through 23

SENS:REF:CHAN (@115),(@116:123) reference channel scanned 
before channels 16 - 23

Supplying a Fixed Reference Temperature

The [SENse:]REFerence:TEMPerature <degrees_c> command 
immediately stores the temperature of a controlled temperature reference 
junction panel in the Reference Temperature Register. The value is applied 
to all subsequent thermocouple channel measurements until another 
reference temperature value is specified or measured. There is no need to use 
SENS:REF:CHANNELS.

To specify the temperature of a controlled temperature reference panel:

SENS:REF:TEMP 50 reference temp = 50 °C 
Now begin scan to measure thermocouples

Linking Strain
Measurements

Strain measurements usually employ a Strain Completion and Excitation 
SCP (HP E1506,E1507,E1511) or HP E1529 Remote Strain Conditioning 
Unit. To link channels to strain EU conversions send the 
[SENSe:]FUNCtion:STRain:<bridge_type>  [<range>,](@<ch_list>)

• <bridge_type> is not a parameter but is part of the command syntax. 
The following table relates the command syntax to bridge type. See 
the HP E1506 and HP E1507, and HP E1511 SCPs’ user’s manua
Programming the HP E1422A for Data Acquisition and Control  111Chapter 4



g the 
5

ion:
bridge schematics and field wiring information.

*   These choices are only available with the HP E1529A

** This choice is only available with HP E1529A channels that
  have had a user supplied resistor installed.

• The ch_list parameter specifies which sense SCP channel(s) to link to 
the strain EU conversion, not the strain bridge completion SCP 
channels. ch_list does not specify channels on the HP E1506, and 07 
Strain Bridge Completion SCPs. ch_list can specify any of the lower 
four channels of an HP E1511 SCP since these channels are the sense 
channels used to measure the SCPs four bridge completion channels.

• HP E1529A channels provide both strain bridge completion and 
bridge output sense so ch_list links strain EU conversion directly to 
those channels.

Note When the SENS:FUNC:STR:<bridge_type> command is used with 
HP E1529A channels, the bridge configuration switches for those channels 
are set to actually configure the bridge type specified. There is no need to 
send the configuration only SENSe:STRain:BRIDge:TYPE command for 
channels that use the SENSe:FUNCtion:STRain:<bridge_type> command.

• The optional range parameter can be used to choose a fixed A/D 
range. When not specified (defaulted), the module uses auto-range.

The following command sequence is for conventional strain completion 
SCPs. For HP E1529A based command sequences, see “Programmin
HP E1422A & HP E1529A for Remote Strain Measurement” on page 5

To link channels 23 through 30 to the quarter bridge strain EU convers

SENS:FUNC:STR:QUAR (@123:130) uses autorange

Command  Bridge Type

:FBENding  Full Bending Bridge

:FBPoisson  Full Bending Poisson Bridge

:FPOisson  Full Poisson Bridge

:HBENding  Half Bending Bridge

:HPOisson  Half Poisson Bridge

[:QUARter]  Quarter Bridge (default)

:Q120 *  Quarter using HP E1529A’s 
internal 120Ω resistor

:Q350 * Quarter using HP E1529A’s 
internal 350Ω resistor

:User ** Quarter using HP E1529A’s 
user supplied resistor value
112 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



ts.

se 

 
ay 
’s 

 
ill 

 

 

 

n 
Other commands used to set up strain measurements are:
 [SENSe:]STRain:POISson
 [SENSe:]STRain:EXCitation
 [SENSe:]STRain:GFACtor
 [SENSe:]STRain:UNSTrained

 NOTE Because of the number of possible strain gage configurations, the driver 
must generate any Strain EU conversion tables and download them to the 
instrument when INITiate is executed. This can cause the time to complete 
the INIT command to exceed 1 minute.

See the Command Reference Chapter 6 and the HP E1506/E1507, and 
HP E1511 User’s Manuals for more information on strain measuremen

Custom EU Conversions “Creating and Loading Custom EU Conversion Tables” on page 145. 

 Linking Output
Channels to

Functions

Analog outputs are implemented either by an HP E1531 Voltage 
Output SCP or an HP E1532 Current Output SCP. Channels where the
SCPs are installed are automatically considered outputs. No 
SOURce:FUNCtion command is required since the HP E1531 can only
output voltage, while the HP E1532 can only output current. The only w
to control the output amplitude of these SCPs is through the HP E1422
Algorithm Language.

Setting up Digital Input and Output Channels

Setting up Digital
Inputs

Digital inputs can be configured for polarity and depending on the SCP
model, a selection of input functions as well. The following discussion w
explain which functions are available with a particular Digital I/O SCP 
model. Setting a digital channel’s input function is what defines it as an input
channel.

Setting Input Polarity To specify the input polarity (logical sense) for digital channels use the
command INPut:POLarity <mode>,(@<ch_list>). This capability is 
available on all digital SCP models. This setting is valid even while the
specified channel in not an input channel. If and when the channel is 
configured for input (an input FUNCtion command), the setting will be i
effect.

• The <mode> paramter can be either NORMal or INVerted. When set to 
NORM, an input channel with 3v applied will return a logical 1. When 
set to INV, a channel with 3v applied will return a logic 0.

• The <ch_list> parameter specifies the channels to configure. The 
HP E1533 has 2 channels of 8 bits each. All 8 bits in a channel take on 
Programming the HP E1422A for Data Acquisition and Control  113Chapter 4



t to 

on 
the configuration specified for the channel. The HP E1534 has 8 I/O 
bits that are individually configured as channels.

To configure the lower 8 bit channel of an HP E1533 for inverted polarity:

INP:POLARITY INV,(@108) SCP in SCP position 1

To configure the lower 4 bits of an HP E1534 for inverted polarity:

INP:POL INV,(@132:135) SCP in SCP position 4

Setting Input Function The HP E1533 Digital I/O SCP and the HP E1534 Frequency/Totalizer SCP 
can both input static digital states. The HP E1534 Frequency/Totalizer SCP 
can also input Frequency measurements and Totalize the occurrence of 
positive or negative edges.

Static State (CONDition) Function

To configure digital channels to input static states, use the 
[SENSe:]FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the lower 8 bit channel of an HP E1533 in SCP position 4 to input
SENS:FUNC:COND (@132)

To set the upper 4 channels (bits) of an HP E1534 in SCP pos 2 to input states
SENS:FUNC:COND (@120:123)

Frequency Function

The frequency function uses two commands. For more on this HP E1534 
and HP E1538 capability see the appropriate SCP’s User’s Manual.

To set the frequency counting gate time execute:
[SENSe:]FREQuency:APERature <gate_time>,(@<ch_list>)

 Sets the digital channel function to frequency
[SENSe:]FUNCtion:FREQuency (@<ch_list>)

Totalizer Function

The totalizer function uses two commands also. One sets the channel 
function, and the other sets the condition that will reset the totalizer coun
zero. For more on this HP E1534 and HP E1538 capability see the 
appropriate SCP’s User’s Manual.

To set the HP E1534’s totalize reset mode

[SENSe:]TOTalize:RESet:MODE INIT | TRIG,(@<ch_list>)

To configure HP E1534 channels to the totalizer function
[SENSe:]FUNCtion:TOTalize (@<ch_list>)

Setting up Digital
Outputs

Digital outputs can be configured for polarity, output drive type, and 
depending on the SCP model, a selection of output functions as well. The 
following discussion will explain which functions are available with a 
particular Digital I/O SCP model. Setting a digital channel’s output functi
114 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



is what defines it as an output channel.

Setting Output Polarity To specify the output polarity (logical sense) for digital channels use the 
command OUTPut:POLarity <mode>,(@<ch_list>). This capability is 
available on all digital SCP models. This setting is valid even while the 
specified channel in not an output channel. If and when the channel is 
configured for output (an output FUNCtion command), the setting will be in 
effect.

• The <mode> paramter can be either NORMal or INVerted. When set to 
NORM, an output channel set to logic 0 will output a TTL compatible 
low. When set to INV, an output channel set to logic 0 will output a 
TTL compatible high.

• The <ch_list> parameter specifies the channels to configure. The 
HP E1533 has 2 channels of 8 bits each. All 8 bits in a channel take on 
the configuration specified for the channel. The HP E1534 and 
HP E1538 have 8 I/O bits that are individually configured as channels.

To configure the higher 8 bit channel of an HP E1533 for inverted polarity:

OUTP:POLARITY INV,(@109) SCP in SCP position 1

To configure the upper 4 bits of an HP E1534 for inverted polarity:

OUTP:POL INV,(@132:135) SCP in SCP position 4

Setting Output
 Drive Type

The HP E1533 and HP E1534 use output drivers that can be configured as 
either active or passive pull-up. To configure this, use the command
 OUTPut:TYPE <mode>,(@<ch_list>). This setting is valid even while the 
specified channel in not an output channel. If and when the channel is 
configured for output (an output FUNCtion command), the setting will be in 
effect.

• The <mode> parameter can be either ACTive or PASSive. When set to 
ACT (the default), the output provides active pull-up. When set to 
PASS, the output is pulled up by a resistor.

• The <ch_list> parameter specifies the channels to configure. The 
HP E1533 has 2 channels of 8 bits each. All 8 bits in a channel take on 
the configuration specified for the channel. The HP E1534 has 8 I/O 
bits that are individually configured as channels.

To configure the higher 8 bit channel of an HP E1533 for passive pull-up:

OUTP:TYPE PASS,(@109) SCP in SCP position 1

To configure the upper 4 bits of an HP E1534 for active pull-up:

OUTP:TYPE ACT,(@132:135) SCP in SCP position 4

Setting Output Functions Both the HP E1533 Digital I/O SCP, and HP E1534 and HP E1538 
Frequency/Totalizer SCPs can output static digital states. The  
Frequency/Totalizer SCPs can also output single pulses per trigger, 
Programming the HP E1422A for Data Acquisition and Control  115Chapter 4



n 4
continuous pluses that are width modulated (PWM, and continuous pulses 
that are frequency modulated (FM).

Static State (CONDition) Function

To configure digital channels to output static states, use the 
SOURce:FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the upper 8 bit channel of an HP E1533 in SCP position 4 to output
SOUR:FUNC:COND (@133)

To set the lower 4 channels (bits) of an HP E1534 in SCP pos 2 to output states
SOUR:FUNC:COND (@116:119)

To configure digital channels to output static states: 

Variable Width Pulse Per Trigger

This function sets up one or more HP E1534 or HP E1538 channels to output 
a single pulse per trigger (per algorithm execution). The width of the pulse 
from these channels is controlled by Algorithm Language statements. Use 
the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). 
Example command sequence:

To set HP E1534/38 channel 2 at SCP position 4 to output a pulse per trigger
SOUR:FUNC:PULSE (@134)

Example algorithm statement to control pulse width to 1 msec
O134 = 0.001;

Variable Width Pulses at Fixed Frequency (PWM)

This function sets up one or more HP E1534/38 channels to output a train of 
pulses. A companion command sets the period for the complete pulse 
(↑ edge to ↑ edge). This of course fixes the frequency of the pulse train. The 
width of the pulses from these channels is controlled by Algorithm 
Language statements. 

Use the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). 
Example command sequence:

Enable pulse width modulation for HP E1534’s first channel at SCP positio
SOUR:PULM:STATE ON,(@132)

To set pulse period to 0.5 msec (which sets the signal frequency 2 KHz)
SOUR:PULSE:PERIOD 0.5e-3,(@132)

To set function of HP E1534’s first channel in SCP position 4 to PULSE
SOUR:FUNCTION:PULSE (@132)

Example algorithm statement to control pulse width to .1 msec (20% 
duty-cycle)

O132 = 0.1e-3;

Fixed Width Pulses at Variable Frequency (FM)

This function sets up one or more HP E1534/38 channels to output a train of 
pulses. A companion command sets the width (↑ edge to ↓ edge) of the 
pulses. The frequency of the pulse train from these channels is controlled by 
Algorithm Language statements. 
116 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



E

t a 

or 
ust 
y.

t 
le 

 
s 
n 
u 

ll as 
nts. 

ve 

our 
te 
nels 
2’s 

red 
full 
 Use the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). 
Example command sequence:

To enable frequency modulation for HP E1534’s second channel at SCP 
position 4

SOUR:FM:STATE ON,(@133)
To set pulse width to 0.3333 msec

SOUR:PULSE:WIDTH 0.3333e-3,(@133)
To set function of HP E1534’s second channel in SCP position 4 to PULS

SOUR:FUNCTION:PULSE (@133)
Example algorithm statement to control frequency to 1000 Hz

O133 = 1000;

Variable Frequency Square-Wave Output (FM)
To set function of HP E1534/38’s third channel in SCP position 4 to outpu
variable frequency square-wave.

SOUR:FUNCTION:SQUare (@134)
Example Algorithm Language statement to set output to 20KHz

O134 = 20e3;

For complete HP E1534/38 capabilities, see the SCP’s User’s Manual.

Performing Channel Calibration (Important!)

Calibrationg the
HP E1422A

The *CAL? (also performed using CAL:SETup then CAL:SETup?) is a 
very important step. *CAL? generates calibration correction constants f
all analog input and output channels on-board the HP E1422A. *CAL? m
be performed in order for the HP E1422 to deliver its specified accurac

Operation and
Restrictions

 *CAL? generates calibration correction constants for each analog inpu
channel for offset and gain at all 5 A/D range settings. For programmab
input SCPs, these calibration constants are only valid for the current 
configuration (gain, and filter cut-off frequency). This means that *CAL?
calibration is no longer valid if you change channel gain or filter setting
(INP:FILT or INP:GAIN), but is still valid for changes of channel functio
or range (using SENS:FUNC  ...). The calibration becomes invalid if yo
move these SCPs to different SCP locations.

For analog output channels (both measurement excitation SCPs as we
control output SCPs) *CAL? also generates calibration correction consta
These calibration constants are valid only for the specific SCPs in the 
positions they are currently in. The calibration becomes invalid if you mo
these SCPs to different SCP locations.

How to Use *CAL? When you turn power on to the HP E1422 after you have first installed y
SCPs (or after you have moved SCPs), the module will use approxima
values for calibration constants. This means that input and output chan
will function although the values will not be as accurate as the HP E142
specified capability. At this point, make sure the module is firmly ancho
to the mainframe (front panel screws are tight), and let it warm up for a 
hour. After it has warmed up, execute *CAL?.
Programming the HP E1422A for Data Acquisition and Control  117Chapter 4



ce 
nd 

ays 

to 
 

ure. 
ill be 

 

re 
 
 
ltage 
 gain 
 
 

nels 

 the 
What *CAL? Does The *CAL? command causes the module to calibrate A/D offset and gain, 
and all channel offsets. This may take many minutes to complete. The actual 
time it will take your HP E1422 to complete *CAL? depends on the mix of 
SCPs installed. *CAL? performs literally hundreds of measurements of the 
internal calibration sources for each channel and must allow 17 time 
constants of settling wait each time a filtered channel’s calibration sour
changes value. The *CAL? procedure is internally very sophisticated a
results in an extremely well calibrated module.

When *CAL? finishes, it returns a +0 value to indicate success. The 
generated calibration constants are now in volatile memory as they alw
are when ready to use. If the configuration just calibrated is to be fairly 
long-term, you should now execute the CAL:STORE ADC command 
store these constants in non-volatile memory. That way the module can
restore calibration constants for this configuration in case of a power fail
After power returns, and after the module warms up, these constants w
relatively accurate.

Re-Execute
 *CAL? When:

• When you change the channel gain and/or filter cut-off frequency on 
programmable SCPs (using INPut:GAIN, or INPut:FILTer ... )

• When you re-configure SCPs to different locations. This is true even if 
you replace an SCP with an identical model SCP because the 
calibration constants are specific to each SCP channel’s individual
performance.

• When the ambient temperature within the mainframe changes 
significantly. Temperature changes affect accuracy much more than 
long-term component drift. See temperature coefficients in Appendix 
A page 375 "Specifications". 

 NOTE To save time when performing channel calibration on multiple HP E1422s 
in the same mainframe, use the CAL:SETup and CAL:SETup? commands 
(See “CALibration:SETup” on page 236. for details). 

Calibrating Remote
Signal Conditioning

Units

RSCUs have a local calibration source that the HP E1422A can measu
directly. This source voltage along with a local short can be fed to each
channel on the RSCU. The HP E1422A reads the output value of each
remote channel when connected to the short, and then the calibration vo
source. Using this method, the HP E1422A can determine the offset and
values for each remote channel. Further, these values can be stored in
non-volatile memory in the RSCU. The commands used to perform the
remote calibration are:CALibration:REMote (@<ch_list>) where ch_list 
need only contain the first channel on each RSCU to calibrate all chan
on that RSCU. The command to store the calibration constants into 
non-volatile memory is: CALibration:REMote:STORe (@<ch_list>) 
where ch_list need only contain the first channel on each RSCU to store
calibration constants into non-volatile flash memory.
118 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



t 
e” 

 
 
er 

 

f a 
As 

o to 
t> 

O or 
ion 

nly to 
Defining an Analog Input Scan List (ROUT:SEQ:DEF)
In this programming step you will define the contents of the analog input 
Scan List using the ROUTe:SEQuence:DEFine command. This allows you 
to make measurements that will be stored to the Current Value Table (CVT) 
and/or the FIFO buffer without programming or executing any algorithms. 
While you can use the HP E1422 exlusively in this way, you can also 
combine both modes of operation (scanned analog input and algorithmic 
acquisition-and-control). In fact there is only a single analog input scan list 
and it is defined as the sum of channels specified by ROUT:SEQ:DEF and 
referenced in any algorithms downloaded with the ALG:DEF SCPI 
command or the hpe1422_downloadAlg(...) plug&play function. Duplicate 
channel references are discarded. No matter how many times a channel is 
referenced, it is only measured once per trigger and the same value is seen 
in storage and by algorithms.

ROUTe:SEQuence:DEFine accepts both on-board channels from 
conventional SCPs as well as remote channels from Remote Signal 
Conditioning Units (RSCUs). For details about syntax see “Channel Lis
(Standard Form)” starting on page 203, and “ROUTe:SEQuence:DEFin
on page 291.

Note Certain analog input SCPs display higher than normal offset and noise
figures if their channels are scanned just before channels on a Remote
Signal Conditioning Unit. To avoid any such interraction, you should ord
your scan list so all remote channels (5-digit channel numbers) appear
before any on-board channels (3-digit channel numbers)

Example Scan List

To set-up a scan list to take measurements on all on-board channels o
conventional SCP in position 0 and all remote channels of 4 HP E1529
connected to 2 HP E1539A SCPs in SCP positions 1 and 2:

ROUT:SEQ:DEF (@100:107,10800:11731)

Controlling Scan List
Data Destination

Readings taken on channels specified by ROUT:SEQ:DEF by default g
both the FIFO buffer and the CVT. By using another form of the <ch_lis
parameter this data destination can be controlled to be the CVT, theFIF
even neither (no reading stored). For more on controlling data destinat
See “ROUTe:SEQuence:DEFine” on page 291.

Example Scan List with controlled data destination

To set-up a scan list as above but send the remote channel readings o
the FIFO buffer:

ROUT:SEQ:DEF (@100:107,2(10800:11731))
Programming the HP E1422A for Data Acquisition and Control  119Chapter 4



22's 

 

le 

m, 
er 

 

tion 
ally 
Defining C Language Algorithms
This section is an overview of how to write and download C algorithms into 
the E1422’s memory. The assumption is that you have some programming 
experience in C, but since the E1422’s version of C is limited, just about any 
experience with a programming language will suffice. “Creating and 
Running Algorithms” on page 155 for a complete descussion of the  E14
C language algorithm functionality.

Arithmetic Operators: add +, subtract -, multiply *, divide /
Assignment Operator: =
Comparison Functions: less than <, less than or equal <=, greater than >, 
greater than or equal >=, equal to ==, not equal to !=
Boolean Functions: and &&, or ||, not !
Variables: scalars of type  static float, and single dimensioned arrays
of type static float limited to 1024 elements.
Constants:
32-bit decimal integer; Dddd... where D and d are decimal digits but D is 
not zero. No decimal point or exponent specified.
32-bit octal integer; 0oo... where 0 is a leading zero and o is an octal digit. 
No decimal point or exponent specified.
32-bit hexadecimal integer; 0Xhhh... or 0xhhh... where h is a hex digit.
32-bit floating point; ddd.,  ddd.ddd,  ddde±dd, dddE±d, ddd.ddde±dd, 
or ddd.dddE±dd where d is a decimal digit.
Flow Control: conditional construct if(){ } else { }
Intrinsic Functions:
Return the absolute value; abs(<expr>)
Return minimum; min(<expr1>,<expr2>)
Return maximum; max(<expr1>,<expr2>)
User defined function; <user_name>(<expr>)
Write value to CVT element;  writecvt(<expr>,<expr>)
Write value to FIFO buffer; writefifo(<expr>)
Write value to both CVT and FIFO; writeboth(<expr>,<expr>)

 Note for
VXIplug&play users

While the following discussion of algorithm definition is useful for 
plug&play users as regards the coding of the algorithm or global variab
definition, the method of generating the algorithm code and actually 
down-loading it to the HP E1422 becomes much easier because of 
plug&play e1422.exe Soft Front Panel program, and 
hpe1422_downloadAlg(...) plug&play driver function.

Using the SFP "Algorithm Panel", you can create and test your algorith
and then store it to a file. The hpe1422_downloadAlg(...) plug&play driv
function was created specifically to download algorithms from files into
your HP E1422A as part of your application program.

Global variable
definition

Global variables are necessary when you need to communicate informa
from one algorithm to another. Globals are initialized to 0 unless specific
120 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



assigned a value at define time. The initial value is only valid at the time of 
definition. That is, globals remain around and may be altered by other SCPI 
commands or algorithms. Globals are removed only by power-ON or *RST. 
The following string output is valid for strings of 256 characters or less.

ALG:DEF ’globals’,’static float output_max = 1, coefficients[ 10 ];’

If the global definition exceeds 256 characters, you need to download an 
indefinite block header, the definitions, and terminated by a LF/EOI 
sequence:
ALG:DEF ’globals’,#0static float output_max = 1, ..... LF/EOI

The LF/EOI sequence is part of the I/O and Instrument Manager in HP VEE. 
You must edit the E1422 I/O device for direct I/O and purposely select EOI 
to be sent with the EOL terminator.

Algorithm definition Algorithms are similar in nature to global definitions. Both scalars and 
arrays can be defined for local use by the algorithm. If less than 256 
characters, you need only place the algorithm code within string quotes:

ALG:DEF ’alg1’,’static float a = 1; if ( I100 > a ) writecvt( I100,10);’

If the algorithm exceeds 256 characters, you need to download an indefinite 
block header, the algorithm code, and terminated by a LF/EOI sequence:

ALG:DEF ’alg2’,#0static float a = 1; ... ;LF/EOI

Algorithms remain around and cannot be altered once defined unless you 
specify a fixed size for the algorithm(see Chapter 4). Algorithms are 
removed from memory only by issueing a *RST or power-ON condition.

Pre-setting
Algorithm Variables

As you may have noticed in the examples above, you can initialize a variable 
to a particular value. However, that value is a one-time initialization. Later 
program execution may alter the variable, and re-issueing an INIT command 
to re-start program execution will NOT re-initialize that variable. Instead, 
you can alter any scalar or array using SCPI commands prior to issueing the 
INIT command, or you can rely upon the intrinsic variable First_loop to 
conditionally preset variables after receiving the INIT command. First_loop 
is a variable that is preset to non-zero due to the execution of the INIT 
command. With the occurrence of the first scan trigger and when algorithms 
execute for the first time, First_loop’s value will be non-zero. Subsequent 
triggers will find this variable cleared. Here’s an example of how First_loop 
can be used:

ALG:DEF ’alg1’,#0static float a,b,c, start, some_array[ 4 ]; if ( First_loop ){ a 
= 1; b = 2; c = 3; } * * LF/EOI

To pre-set variables under program control before issueing the INIT 
command, the ALG:SCALAR and ALG:ARRAY commands can be used. 
Assume the example algorithm above has already been defined. To preset 
the scalar start and the array some_array, you can use the following 
commands:
Programming the HP E1422A for Data Acquisition and Control  121Chapter 4



ALG:SCAL ’alg1’,’start’,1.2345
ALG:ARR ’alg1’,’some_array’,#232..........LF/EOI
ALG:UPD

The ALG:SCAL command designates the name of the algorithm of where 
to find the local variable start and assigns that variable the value of 1.2345. 
Likewise, the ALG:ARRAY command designates the name of the 
algorithm, the name of the local array, and a definite length block for 
assigning the four real number values. As you can see, the scalar assignment 
uses ASCII and the array assignment uses binary. The later makes for a 
much faster transfer especially for large arrays. The format used is IEEE-754 
8-byte binary real numbers. The header is #232 which states "the next 2 
bytes are to be used to specify how many bytes are comming". In this case, 
32 bytes represent the four 8-byte elements of the array. A 100 element array 
would have a header of #3800. If you wanted to pre-initialize a global scalar 
or array, the word ’globals’ must be used instead of the algorithm name. The 
name simply specifies the memory space of where to find those elements.

As stated earlier in the chapter, all updates (changes) are held in a holding 
buffer until the computer issues the update command. The ALG:UPD is that 
command. Executing ALG:UPD before INIT does not make much 
difference since there is no concern as to how long it takes or how it is 
implemented. After INIT forces the buffered changes to all take place during 
the next Update Phase in the trigger cycle after reception of the
ALG:UPD command..

For VXIplug&play users use the functions hpe1422_algArray, 
hpe1422_algScal to send new values to algorithm variables, and 
hpe1422_cmd to send the ALG:UPD... SCPI command. See your HP E1422 
plug&play driver Help file

Defining Data Storage

Specifying the
 Data Format

The format of the values stored in the FIFO buffer and CVT never changes. 
They are always stored as IEEE 32-bit Floating point numbers. The 
FORMat  <format>[,<length>] command merely specifies whether and how 
the values will be converted as they are transferred from the CVT and FIFO 
to the host computer.

• The <format>[,<length>] parameters can specify:
 
 PACKED Same as REAL,64 except for the values of
 IEEE -INF, IEEE +INF, and Not-a-Number (NaN).
 See FORMat command in Chapter 5 for details.
 REAL,32 means real 32-bit (no conversion, fastest)
 REAL same as above
 REAL,64 means real 64-bit (values converted)
 ASCii,7 means 7-bit ASCII (values converted)
 ASCii same as above (the *RST condition)

To specify that values are to remain in IEEE 32-bit Floating Point format for 
122 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



ing 
 the 
 

l 
he 

ead 

ing 

 to 

at 

 an 
fastest transfer rate:

FORMAT REAL,32

To specify that values are to be converted to 7-bit ASCII and returned as a 
15 character per value comma separated list:

FORMAT ASC,7 The *RST, *TST? and power-on 
default format

or
FORM ASC same operation as above

Selecting the
 FIFO Mode

The HP E1422’s FIFO can operate in two modes. One mode is for read
FIFO values while the HP E1422 is scanning and/or running algorithms,
other mode is for reading FIFO values after operation have been halted
(ABORT sent). 

•  BLOCking; The BLOCking mode is the default and is used to read the 
FIFO while algorithms are executing. Your application program must 
read FIFO values often enough to keep it from overflowing (See 
“Continuously Reading the FIFO (FIFO mode BLOCK)” on 
page 130.). The FIFO stops accepting values when it becomes ful
(65,024 values). Values sent after the FIFO is full are discarded. T
first value to exceed 65,024 sets the STAT:QUES:COND? bit 10 
(FIFO Overflowed), and an error message is put in Error Queue (r
with SYS:ERR? command).

• Overwrite; When the HP E1422 is running and the FIFO fills, the 
oldest values in the FIFO are overwritten by the newest values. Only 
the latest 65,024 values are available. In OVERwrite mode the module 
must be halted (ABORT sent) before reading the FIFO (See “Read
the Latest FIFO Values (FIFO mode OVER)” on page 131.). This 
mode is very useful when you want to view an algorithm’s response
a disturbance.

To set the FIFO mode (blocking is the *RST/Power-on condition):

[SENSe:]DATA:FIFO:MODE OVERWRITE select overwrite mode
[SENSe:]DATA:FIFO:MODE BLOCK select blocking mode

Setting up the Trigger System

Arm and Trigger
Sources

Figure 4-6 shows the trigger and arm model for the HP E1422. Note th
when the Trigger Source selected is TIMer(the default), the remaining 
sources become Arm Sources. Using ARM:SOUR allows you to specify
event that must occur in order to start the Trigger Timer. The default 
Arm source is IMMediate (always armed).
Programming the HP E1422A for Data Acquisition and Control  123Chapter 4



 Selecting the
 Trigger Source

In order to start an instrument operation cycle, a trigger event must occur. 
The source of this event is selected with the TRIGger:SOURce  <source> 
command. The following table explains the possible choices for <source>.

 NOTES 1. When TRIGger:SOURce is not TIMer, ARM:SOURce must be set to 
IMMediate (the *RST condition). If not, the INIT command will 
generate an error -221,"Settings conflict".

2. When TRIGger:SOURce is TIMer, the trigger timer interval 
(TRIG:TIM <interval>) must allow enough time to scan all channels, 
execute all algorithms and update all outputs or a +3012, "Trigger 
Too Fast" error will be generated during the trigger cycle. See the 

Figure 4-6. Logi

Parameter Value  Source of Trigger (after INITiate:… command)

BUS  TRIGger[:IMMediate], *TRG, GET (for HP-IB)

EXTernal  "TRG" signal input on terminal module

HOLD  TRIGger[:IMMediate]

IMMediate  The trigger signal is always true (scan starts when an 
INITiate:… command is received).

SCP  SCP Trigger Bus (future HP or SCP Breadboard)

TIMer  The internal trigger interval timer (must set Arm source)

TTLTrg<n>  The VXIbus TTLTRG lines (n=0 through 7)
124 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



TRIG:TIM command on page 355 for details.

To set the trigger source to the internal Trigger Timer (the default):

TRIG:SOUR TIMER now select ARM:SOUR

To set the trigger source to the External Trigger input connection:

TRIG:SOUR EXT an external trigger signal

To set the trigger source to a VXIbus TTLTRG line:

TRIG:SOUR TTLTRG1 the TTLTRG1 trigger line

Selecting Trigger Timer
Arm Source

Figure 4-6 shows that when the TRIG:SOUR is TIMer, the other trigger 
sources become Arm sources that control when the timer will start. The 
command to select the arm source is ARM:SOURce <source>.

• The <source> parameter choices are explained in the following table

 NOTE When TRIGger:SOURce is not TIMer, ARM:SOURce must be set to 
IMMediate (the *RST condition). If not, the INIT command will generate 
an error -221,"Settings conflict".

To set the external trigger signal as the arm source:

ARM:SOUR EXT trigger input on connector 
module

Programming the
Trigger Timer

When the HP E1422 is triggered, it begins its instrument operation cycle. 
The time it takes to complete a cycle is the minimum interval setting for the 
Trigger Timer. If programmed to a shorter time, the module will generate a 
"Trigger too fast" error. So, how can you determine this minimum time? 
After you have defined all of your algorithms, you send the ALG:TIME?  
command with its <alg_name> parameter set to ’MAIN’. This causes the 

Parameter Value  Source of Arm (after INITiate:… command)

BUS  ARM[:IMMediate]

EXTernal  "TRG" signal input on terminal module

HOLD  ARM[:IMMediate]

IMMediate  The arm signal is always true (scan starts when 
an INITiate:… command is received).

SCP  SCP Trigger Bus (future HP or SCP Breadboard)

TTLTrg<n>  The VXIbus TTLTRG lines (n=0 through 7)
Programming the HP E1422A for Data Acquisition and Control  125Chapter 4



e 
ed 

n 

um.

o 
 set 
he 
unt 
can 

ion, 
 an 

 
ct 
 
or 

les 

the 
 the 

ou 
 also 
start 
 the 
e, 

ated 
e 
HP E1422’s driver to analyze the time required for all four phases of th
operation cycle; Input, Update, Calculate, and Output. The value return
from ALG:TIME? ’MAIN’ is the minimum allowable Trigger Timer 
interval required to avoid the "Trigger too fast" error. With this informatio
you now execute the command TRIGger:TIMer <interval> and set 
<interval> to the desired time that is equal to or greater than the minim

Setting the Trigger
Counter

The Trigger Counter controls how many trigger events will be allowed t
start an input-calculate-output cycle. When the number of trigger events
with the TRIGger:COUNt command is reached, the module returns to t
Trigger Idle State (needs to be INITiated again). The default Trigger Co
is 1. Note that this default was chosen to make testing data aquisition s
list easier (only one scan list of data in the FIFO). For algorithm operat
you will probably want to change the count to INFinite (can be triggered
unlimited number of times). This setting will be used most often  for 
un-interrupted execution of control algorithms.

To set the trigger count to 50 (perhaps to help debug an algorithm):

TRIG:COUNT 50 execute algorithms 50 times then 
return to Trig Idle State.

Sending Trigger
Signals to

Other Instruments

The HP E1422 can output trigger signals on any of the VXIbus TTLTRG
lines. Use the OUTPut:TTLTrg<n>[:STATe] ON | OFF command to sele
one of the TTLTRG lines and then choose the source that will drive the
TTLTRG line with the command OUTPut:TTLTrg:SOURce command. F
details see OUTP:TTLTRG commands starting on page 286

To output a signal on the TTLTRG1 line each time the Trigger Timer cyc
execute the commands: 

TRIG:SOUR TIMER select trig timer as trig source
OUTP:TTLTRG1 ON select and enable TTLTRG1 line
OUTP:TTLTRG:SOUR TRIG each trigger output on 

TTLTRG1

INITiating the Module/Starting Scanning and Algorithms
When the INITiate[:IMMediate] command is sent, the HP E1422 builds 
input Scan List from the input channels you referenced when you defined
algorithm with the ALG:DEF command above and from the channels y
referenced with the ROUTe:SEQuence:DEFine command. The module
enters the Waiting For Trigger State. In this state, all that is required to 
a scan and/or run an algorithm is a trigger event for each pass through
input-calculate-output instrument operation cycle. To initiate the modul
send the command:

INIT module to Waiting for Trigger 
State

When an INIT command is executed, the driver checks several interrel
settings programmed in the previous steps. If there are conflicts in thes
settings an error message is placed in the Error Queue (read with the 
126 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



SYST:ERR? command). Some examples:

• If TRIG:SOUR is not TIMer then ARM:SOUR must be IMMediate.

• The time it would take to execute all algorithms is longer than the 
TRIG:TIMER interval currently set. 

Starting Scanning
and/or Algorithms

Once the module is INITiated it can accept triggers from any source 
specified in TRIG:SOUR.

TRIG:SOUR TIMER (*RST default)
ARM:SOUR IMM (*RST default)
INIT INIT starts Timer triggers

or

TRIG:SOUR TIMER
ARM:SOUR HOLD
INIT INIT readies module
ARM ARM starts Timer triggers.

... and the algorithms start to execute.

The Operating
Sequence

The HP E1422 has four major operating phases plus one optional phase. 
Figure 4-7 shows these phases. A trigger event starts the sequence:

1. (INPUT); the state of all digital inputs are captured and each analog 
input channel that is in the scan list and/or referenced by an algorithm 
variable is scanned. Reading values from channels placed in the Scan 
List with ROUT:SEQ:DEF are sent to the CVT and/or FIFO.

1A.(Remote Runtime Scan Verification); If a Scan Status Variable 
(S1xx) is referenced in any algorithm, this time is used to check the 
scan list execution of the Remote Signal Conditioning Unit (RSCU) 
connected to the channel xx. The S1xx variable will then take on one 

Figure 4-7. Sequence of Loop Operations
Programming the HP E1422A for Data Acquisition and Control  127Chapter 4



and 
d 
L, 

ime.

that 

time 
ns 
UT 

. 

 
e 

e 
CPI 

r 
of three values; 0=normal operation, 1=the RSCU is disconnected, 
and 3= the RSCU scan list was out of synchronization. Each 
HP E1539A SCP has 2 main channels so there are 16 possible scan 
status variables; S100, S101, S108, S109, S116, S117, S124, S125, 
S132, S133, S140, S141, S148, S149, S156, and S157. If no S1xx 
variable is referenced in any algorithm, then phase 1A is not 
executed.

2. (UPDATE); The update phase is a window of time made large enough 
to process all variables and algorithm changes made after INIT. Its 
width is specified by ALG:UPDATE:WINDOW. This window is the 
only time variables and algorithms can be changed. Variable and 
algorithm changes can actually be accepted during other phases, but 
the changes don’t take place until an ALG:UPDATE command is 
received and the update phase begins. If no ALG:UPDATE comm
is pending, the update phase is simply used to accept variable an
algorithm changes from the application program (using ALG:SCA
ALG:ARR, ALG:DEF). Data acquired by external specialized 
measurement instruments can be sent to your algorithms at this t

Note Changing algorithm variables requires HP E1422 hardware resources 
can only be provided during the INPUT and UPDATE phases of the 
operating cycle. The HP E1422A does not update variables during the 
between the CALCULATE and OUTPUT phases. Therefore, applicatio
that are intensive in the update area should consciously extend the INP
and UPDATE periods through use of the ALG:UPD:WINDOW and 
SAMP:TIME commands or, by reducing the time between the 
CALCULATE and OUTPUT phases through shorter algorithm loop time
See TRIG:TIMer.

3. (CALCULATE); all INPUT and UPDATE values have been made 
available to the algorithm variables and each enabled algorithm is
executed. The results to be output from algorithms are stored in th
Output Channel Buffer.

4. (OUTPUT); each Output Channel Buffer value stored during 
(CALCULATE) is sent to its assigned SCP channel. The start of th
OUTPUT phase relative to the Scan Trigger can be set with the S
command ALG:OUTP:DELay.

Reading Running Algorithm Values
The most efficient means of acquiring algorithm derived data from the 
E1422 is to have its algorithms store real-number results in the FIFO o
CVT. The algorithms use the writefifo(), writecvt(), and writeboth() 
128 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



le 

at 

t for 
en 

be 
ated 
VT 

 

intrinsic functions to perform this operation as seen in Figure 3-9.

Reading CVT Data Note that the first 10 elements of the CVT are unavailable. These are used 
by the driver for internal data retrieval. However, all algorithms have access 
to the remaining 502 elements. Data is retrieved from the CVT with the 
SCPI command DATA:CVT? (@10,12,14:67)

For VXIplug&play users use the function hpe1422_readCVT_Q for 
reading contiguous elements or hpe1422_cmdReal64Arr_Q(ViSession vi, 
’DATA:CVT? (@<element_list>)’, ViInt32 size, ViReal64 _VI_FAR 
result[ ], ViPInt32 count) for non-contiguous elements (as in the examp
above). See your HP E1422 plug&play driver Help file.

The format of data comming from the CVT is determined by the FORM
command.

 Important! There is a fixed relationship between channel number and CVT elemen
values from channels placed in the Scan List with ROUT:SEQ:DEF. Wh
you are mixing Scan List data acquisition with algorithm data storage, 
careful not to overwrite Scan List generated values with algorithm gener
values. See “ROUTe:SEQuence:DEFine” on page 291. for controlling C
entries from the analog scan list.

Note After *RST/Power-on, each element in the CVT contains the IEEE-754
value "Not-a Number" (NaN). Channel values which are a positive 

CVT 10

Note: CVT 0 - 9 unavailable

writecvt( <expr>, 10 );

writecvt( <expr>, 13 );

writeboth( <expr>, 14 );

writefifo( <expr> );

CVT 11

CVT 12

CVT 13

CVT 14

CVT 511

(65,024 elements)

Current Value Table (CVT)
(502 elements)

First-in-First-Out Data Buffer (FIFO)
Programming the HP E1422A for Data Acquisition and Control  129Chapter 4



 set 

ms 
data, 

 the 
overvoltage return IEEE +INF and negative overvoltage return IEEE -INF. 
Refer to the FORMat command in on page 261 for the NaN, +INF, and 
-INF values for each data format.

Reading FIFO Data The FIFO can store up to 65024 real numbers. Each writefifo() or 
writeboth() cause that expression to be placed into the FIFO. With a FIFO 
this large, you can store many seconds worth of data, dependent upon the 
volume of writes and the trigger cycle time. The FIFO’s most valuable 
service is to keep your computer from having to spend too much time 
acquiring data from the E1422. Data is retrieved from the FIFO with the 
SCPI command DATA:FIFO:PART?<count>

<count> can be a number larger than the FIFO(up to 2.1 billion) if you want 
to read data continuously. And, you can query how much data is in the FIFO 
with the DATA:FIFO:COUNT? command.

For VXIplug&play users see the functions hpe1422_readFifo32_Q 
andhpe1422_readFifo_Q in your HP E1422 plug&play driver Help file.

Which FIFO Mode? The way you will read the FIFO depends on how the FIFO mode was set in 
the programming step 7 of the “Programming Sequence” on page 101.

Continuously Reading the FIFO (FIFO mode BLOCK)

If you are going to read the FIFO while algorithms are running you must
the FIFO mode to SENS:DATA:FIFO:MODE BLOCK. In this mode if 
the FIFO fills up, it stops accepting values from algorithms. The algorith
continue to execute, but the latest data is lost. To avoid losing any FIFO 
your application needs to read the FIFO often enough to keep it from 
overflowing. Here’s a flow diagram to show you where and when to use
FIFO commands.
130 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



 the 
g 

’s 
se 

rd of 
Here’s an example command sequence for Figure 4-8. It assumes that
FIFO mode was set to BLOCK and that at least one algorithm is sendin
values to the FIFO.

following loop reads number of values in FIFO while algorithms executing
loop while "measuring" bit is true see STAT:OPER:COND bit 4

SENS:DATA:FIFO:COUNT? query for count of values in 
FIFO

input n_values here
if n_values >= 16384 Set minimum block size you want 

to transfer
SENS:DATA:FIFO:PART? n_values ask for n_values
input read_data here Format depends on FORMat 

cmd
end if

end while loop 
following checks for values remaining in FIFO after "measuring" false

SENS:DATA:FIFO:COUNT? query for values still in FIFO
input n_values here
if n_values if any values...

SENS:DATA:FIFO:PART? n_values
input read_data here get remaining values from FIFO

end if

 Reading the Latest FIFO Values (FIFO mode OVER)

In this mode the FIFO always contains the latest values (up to the FIFO
capacity of 65,024 values) from running algorithms. In order to read the
values the algorithms must be stopped (use ABORT).This forms a reco

Begin Data Retrieval

Exit Data Retrieval

Algorithm Stopped?

Any Values in FIFO?Enough Values
in FIFO?

Execute Final Transfer
Command

Execute Bulk Transfer
Command

DATA:FIFO:COUNT?

DATA:FIFO:PART? <n_values>

no

nono

yes

yesyes

STAT:OPER:COND?
(bit 4 "measuring")

Figure 4-8. Controlling Reading Count
Programming the HP E1422A for Data Acquisition and Control  131Chapter 4



an 

IFO.

m the 

422 

VT, 
d the 
rray 
, you 
ns 

s. 

4 
 
cify 
-IB 

lar 
22 

e 

 (see 
the algorithm’s latest performance. In the OVERwrite mode, the FIFO c
not be read while it is accepting readings from algorithms. Algorithm 
execution must be stopped before your application program reads the F

Here is an example command sequence you can use to read values fro
FIFO after algorithms are stopped (ABORT sent).

SENS:DATA:FIFO:COUNT? query count of values in FIFO
input n_values here
if n_values if any values...

SENS:DATA:FIFO:PART? n_values Format of values set by FORMat
input read_data here get remaining values from FIFO

end of if

For VXIplug&play users see the functions 
hpe1422_sensDataFifoCoun_Q, hpe1422_readFifo32_Q in your HP E1
plug&play driver Help file.

Reading Algorithm
Variables Directly

To directly read algorithm variables that are not stored in the FIFO or C
you only need specify the memory space(algorithm name or globals) an
name of the variable. To read the values of scalar variables or single a
elements, you use the command ALG:SCALar?. To read an entire array
use ALG:ARRay? The former returns data in ASCII, and the later retur
data in REAL,64( 8-byte IEEE-754 format). This coincides with the 
ALG:SCAL and ALG:ARR commands form writing data to these variable
Here are some examples:

ALG:SCAL? ’globals’,’my_var’ read global variable
ALG:SCAL? ’alg1’,’my_array[6]’ read single element of array
ALG:SCAL? ’alg1’,’S108’ read scan status variable
ALG:ARR? ’alg2’,’my_other_array’ read all elements of array

The ALG:ARR? response data will consist of a block header and real-6
data bytes. For example, if my_other_array was 10 elements, the block
header would be #280 which says there are two bytes of count that spe
80 bytes of data to follow. Data from the E1422 is terminated with the HP
EOI signal.

For VXIplug&play users see the functions hpe1422_algScal_Q (for sca
variables) and hpe1422_algArray_Q (for array variables) in your HP E14
plug&play driver Help file.

Modifying Running Algorithm Variables

Updating the
Algorithm Variables

and Coefficients

The values sent with the ALG:SCALAR and ALG:ARRAY command ar
kept in the Update Queue until an ALGorithm:UPDate command is 
received. 

ALG:UPD cause changes to take place

 
Updates are performed during phase 2 of the instrument operation cycle
Figure 4-7 on page 127). The UPDate:WINDow <num_updates> command 
132 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



can be used to specify how many updates you need to perform during phase 
2 (UPDATE phase) and assigns a constant window of time to accomplish all 
of the updates you will make. The default value for <num_updates> is 20. 
Fewer updates (shorter window) means slightly faster loop execution times. 
Each update takes approximately 1.4 µseconds.

To set the Update Window to allow 10 updates in phase 2:

ALG:UPD:WIND 10 allows slightly faster execution 
than default of 20 updates

A way to synchronize variable updates with an external event is to send the 
ALGorithm:UPDate:CHANnel ’<dig_chan/bit>’ command.

• The <dig_chan/bit> parameter specifies the digital channel/bit that 
controls execution of the update operation.

When the ALG:UPD:CHAN command is received, the module checks the 
current state of the digital bit. When the bit next changes state, pending 
updates are made in the next UPDATE Phase.

ALG:UPD:CHAN ’I133.B0’ perform updates when bit zero of 
HP E1533 at channel 133 
changes state

For VXIplug&play users use the functions hpe1422_algArray, 
hpe1422_algScal to send new values to algorithm variables, and 
hpe1422_cmd to send the ALG:UPD... SCPI command. See your HP E1422 
plug&play driver Help file

Enabling and
Disabling

Algorithms

An algorithm is enabled by default when it is defined. However, the 
ALG:STATe <alg_name>, ON | OFF command is provided to allows you to 
enable or disable algorithms. When an individual algorithm is enabled, it 
will execute when the module is triggered. When disabled, the algorithm 
will not execute.

 NOTE The command ALG:STATE <alg_name>, ON | OFF does not take effect 
until an ALG:UPDATE command is received. This allows you to send 
multiple ALG:STATE commands and then synchronize their effect.

 

To enable ALG1 and ALG2, and disable ALG3 and ALG4: 

ALG:STATE ’ALG1’,ON enable algorithm ALG1
ALG:STATE ’ALG2’,ON enable algorithm ALG2
ALG:STATE ’ALG3’,OFF disable algorithm ALG3
ALG:STATE ’ALG4’,OFF disable algorithm ALG4
ALG:UPDATE changes take effect at next 

update phase

VXIplug&play users see the function hpe1422_cmd to send ALG:STATE 
Programming the HP E1422A for Data Acquisition and Control  133Chapter 4



 of 

 
r 
t the 
 for 
Setting Algorithm
Execution

Frequency

The ALGorithm:SCAN:RATio ’<alg_name>’,<num_trigs> command sets 
the number of trigger events that must occur before the next execution
algorithm <alg_name>. If you wanted ’ALG3’ to execute only every 20 
triggers, you would send ALG:SCAN:RATIO ’ALG3’,20, followed by an
ALG:UPDATE command. ’ALG3’ would then execute on the first trigge
after INIT, then the 21st, then the 41st, etc. This can be useful to adjus
response time of a control algorithm relative to others. The *RST default
all algorithms is to execute on every trigger event.

Example SCPI Command Sequence
This example SCPI command sequence puts together all of the steps 
discussed so far in this chapter.

*RST Reset the module
Setting up Signal Conditioning (only for programmable SCPs & RSCUs)

INPUT:FILTER:FREQUENCY 2,(@116:119) On-board SCP channels
INPUT:FILTER:FREQUENCY 10,(@14000:14931)         128 Remote RSCU channels
INPUT:GAIN 64,(@116:119)
INPUT:GAIN 8,(@120:123)

set up digital channel characteristics
INPUT:POLARITY NORM,(@125) (*RST default)
OUTPUT:POLARITY NORM,(@124) (*RST default)
OUTPUT:TYPE ACTIVE,(@124)

link channels to EU conversions (measurement functions)
SENSE:FUNCTION:VOLTAGE AUTO,(@100:107) (*RST default)
SENSE:REFERENCE THER,5000,AUTO,(@108)
SENSE:FUNCTION:TEMPERATURE TC,T,AUTO,(@109:123)
SENSE:REFERENCE:CHANNELS (@108),(@109:123)

configure digital output channel for "alarm channel"
SOURCE:FUNCTION:CONDITION (@132)

execute On-board channel calibration (can take several minutes)
*CAL?
enter statement here for cal return

execute Remote channel calibration on RSCUs
CAL:REMOTE? (@14000:14931)
enter statement here for cal return

Direct data acquisition channels placed in Scan List. On-board channels 
00-07, and 128 remote channels covered by HP E1539 SCPs in positions 5 & 6

ROUTE:SEQUENCE:DEFINE (@100:107,14000:14931)
Configure the Trigger System

ARM:SOURCE IMMEDIATE (*RST default)
TRIGGER:COUNT 1 (*RST default)
TRIGGER:TIMER .010 (*RST default)
TRIGGER:SOURCE TIMER (*RST default)

Set the channel-to-channel measurement pacing (channel settling time)
SAMPle:TIMer 4E-5 (*RST default)

specify data format
FORMAT ASC,7 (*RST default)

select FIFO mode
SENSE:DATA:FIFO:MODE BLOCK may read FIFO while running

Define algorithm
ALG:DEFINE ’ALG1’,’static float a,b,c, div, mult, sub;

if ( First_loop )
134 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



{
 a = 1; b = 2; c = 3;
writecvt( a, 10 ); writefifo( b, 11 ); writefifo( c, 12 );
}

writecvt( a / div, 13 );
writecvt( b * mult, 14 );
writecvt( c - sub, 15 ); /* end of algorithm */’

Pre-set the algorithm coefficients
ALG:SCAL ’ALG1’,’div’,5
ALG:SCAL ’ALG1’,’mult’,5
ALG:SCAL ’ALG1’,’sub’,0
ALG:UPDATE all alg vars updated at this time

initiate trigger system (start algorithm)
INITIATE

retrieve algorithm data from elements 10 through 15
SENSE:DATA:CVT? (@10:15,330:457)
enter statement here for CVT values from 6 on-board and 128 remote chans

Example VXIplug&play Driver Function Sequence
This example plug&play command sequence puts together all of the steps 
discussed so far in this chapter.

hpe1422_init(INSTR_ADDRESS, 0, 0, &vi)
hpe1422_reset(vi) Reset the module

Setting up Signal Conditioning (only for programmable SCPs & RSCUs)
hpe1422_cmd(vi, ’INPUT:FILTER:FREQUENCY 2,(@116:119)’)         On-board SCP channels
hpe1422_cmd(vi, ’INPUT:FILTER:FREQUENCY 10,(@14000:14931)’)         128    Remote channels
hpe1422_cmd(vi, ’INPUT:GAIN 64,(@116:119)’)
hpe1422_cmd(vi, ’INPUT:GAIN 8,(@120:123)’)

set up digital channel characteristics
hpe1422_cmd(vi, ’INPUT:POLARITY NORM,(@125)’) (*RST default)
hpe1422_cmd(vi, ’OUTPUT:POLARITY NORM,(@124)’) (*RST default)
hpe1422_cmd(vi, ’OUTPUT:TYPE ACTIVE,(@124)’)

link channels to EU conversions (measurement functions)
hpe1422_cmd(vi, ’SENSE:FUNCTION:VOLTAGE AUTO,(@100:107)’)          (*RST default)
hpe1422_cmd(vi, ’SENSE:REFERENCE THER,5000,AUTO,(@108)’)
hpe1422_cmd(vi, ’SENSE:FUNCTION:TEMPERATURE TC,T,AUTO,(@109:123)’)
hpe1422_cmd(vi, ’SENSE:REFERENCE:CHANNELS (@108),(@109:123)’)

configure digital output channel for "alarm channel"
hpe1422_cmd(vi, ’SOURCE:FUNCTION:CONDITION (@132)’)

execute On-board channel calibration (can take several minutes)
hpe1422_cmdInt16_Q(vi, ’*CAL?’, ViPInt16 result)
test "result" for success

execute Remote channel calibration on RSCUs
hpe1422_cmdInt16_Q(vi, ’CAL:REMOTE? (@14000:14931)’, ViPInt16 &result)
test "result" for success

Direct data acquisition channels placed in Scan List. On-board channels 00-07, and 128 remote channels 
covered by HP E1539 SCPs in positions 5 & 6

hpe1422_cmd(vi, ’ROUTE:SEQUENCE:DEFINE (@100:107,14000:14931)’)
Configure the Trigger System
Programming the HP E1422A for Data Acquisition and Control  135Chapter 4



hpe1422_cmd(vi, ’ARM:SOURCE IMMEDIATE’) (*RST default)
hpe1422_cmd(vi, ’TRIGGER:COUNT 1’) (*RST default)
hpe1422_cmd(vi, ’TRIGGER:TIMER .010’) (*RST default)
hpe1422_cmd(vi, ’TRIGGER:SOURCE TIMER’) (*RST default)

Set the channel-to-channel measurement pacing (channel settling time)
hpe1422_cmd(vi, ’SAMPle:TIMer 4E-5’) (*RST default)

specify data format
hpe1422_cmd(vi, ’FORMAT ASC,7’) (*RST default)

select FIFO mode
hpe1422_cmd(vi, ’SENSE:DATA:FIFO:MODE BLOCK’) may read FIFO while running

Define algorithm. Algorithm from SCPI sequence on previous page can be put in a text file and saved as 
"seqalg.c".

hpe1422_downloadAlg(vi, ’ALG1’, 0, ’seqalg.c’)

Pre-set the algorithm coefficients
hpe1422_algScal(vi, 'ALG1', ’div’, 5)
hpe1422_algScal(vi, 'ALG1', 'mult', 5)
hpe1422_algScal(vi, 'ALG1', 'sub', 0)
hpe1422_cmd(vi, ’ALG:UPDATE’) all alg vars updated at this time

initiate trigger system (start algorithm)
hpe1422_initImm(vi)

retrieve algorithm data from elements 10 through 15
hpe1422_cmdReal64Arr_Q(vi, ’SENSE:DATA:CVT? (@10:15,330:457)’, 502, myfloat64array[ ],&count)
may test the int32 value "count" for number of cvt values reurned
136 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



ter 
 4-9 
ata, 
ary 
rt 

0 
Using the Status System
The HP E1422’s Status System allows you to quickly poll a single regis
(the Status Byte) to see if any internal condition needs attention. Figure
shows that the three Status Groups (Operation Status, Questionable D
and the Standard Event Groups) and the Output Queue all send summ
information to the Status Byte. By this method the Status Byte can repo
many more events than its eight bits would otherwise allow. Figure 4-1
shows the Status System in detail.

Questionable Data Group

Operation Status Group

Standard Event Group

Status Byte

group summary bits

read with
*STB?

Output
Queue

Figure 4-9. Simplified Status System Diagram
Programming the HP E1422A for Data Acquisition and Control  137Chapter 4



QUESTIONABLE DATA GROUP
STATus:QUEStionable:CONDition? (read only)

STATus:QUEStionable:NTR and STATus:QUEStionable:PTR (set filters)

STATus:QUEStionable:EVENt? (reads/clears register)

STATus:QUEStionable:ENABle (sets mask)

Condition
(real time)

Filter Event
(latched)

Enable
(1=enable)

Lost Calibration

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Lo
gi

ca
lO

R
L

og
ic

al
O

R

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

OPERATION STATUS GROUP

STATus:OPERation:CONDition? (reads register)

STATus:OPERation:NTR and STATus:OPERation:PTR (set filters)

STATus:OPERation:EVENt? (reads/clears register)

STATus:OPERation:ENABle (sets mask)

Condition
(real time)

Filter Event
(latched)

Enable
(1=enable)

Trigger Too Fast

FIFO Overflowed

Overvoltage

VME Memory Overflow

Setup Changed

Calibrating

Measuring

Scan Complete

SCP Trigger

FIFO Half Full

Algorithm Interrupt

Output
Queue
Not
Empty

STATUS BYTE GROUP
Summary
(real time)

Enable
(1=enable)

Lo
gi

ca
lO

R

0

1

2

QUE

MAV

ESB

RQS

OPR

*STB?
SPOLL

*SRE <mask_value>
*SRE?

STANDARD EVENT GROUP
Event

(latched)
Enable

(1=enable)

*ESR? *ESE <mask_value>
*ESE?

Lo
gi

ca
lO

R

0

1

2

3

4

5

6

7

(SRQ)

Operation Complete

Request Control

Query Error

Device Dependent Error

Execution Error

Command Error

User request

Power-On

QUE - Questionable Data
MAV - Message Available
ESB - Standard Event
RQS - Request Service
OPR - Operation Status

Summary Bit

Summary Bit

Summary Bit

Summary Bit

Figure 4-10. HP E1422A Status System
138 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



Status Bit Descriptions

Questionable Data Group
Bit  Bit Value  Event Name  Description

8  256  Lost Calibration  At *RST or Power-on Control Processor has found a checksum error in the 
Calibration Constants. Read error(s) with SYST:ERR? command and re-calibrate 
areas that lost constants.

9  512  Trigger Too Fast  Scan not complete when another trigger event received.

10  1024  FIFO Overflowed  Attempt to store more than 65,024 values in FIFO. 

11  2048  Overvoltage 
(Detected on Input)

 If the input protection jumper has not been cut, the input relays have been opened 
and *RST is required to reset the module. Overvoltage will also generate an error.

12  4096  VME Memory 
Overflow

 The number of values taken exceeds VME memory space.

13  8192  Setup Changed  Channel Calibration in doubt because SCP setup may have changed since last 
*CAL? or CAL:SETup command. (*RST always sets this bit.)

Operation Status Group

Bit  Bit Value  Event Name  Description

0  1  Calibrating  Set by CAL:TARE, and CAL:SETup. Cleared by CAL:TARE?, and CAL:SETup?. 
Set while *CAL? executing, then cleared.

4  16  Measuring  Set when instrument INITiated. Cleared when instrument returns to Trigger Idle 
State.

8  256  Scan Complete  Set when each pass through a Scan List is completed

9  512  SCP Trigger  Reserved for future HP  SCPs

10  1024  FIFO Half Full  FIFO contains at least 32,768 values

11  2048  Algorithm Interrupt  The interrupt() function was called in an executing algorithm

Standard Event Group
Bit  Bit Value  Event Name  Description

0  1  Operation Complete  *OPC command executed and instrument has completed all pending operations.

1  2  Request Control  Not used by HP E1422

2  4  Query Error  Attempting to read empty output queue or output data lost.

3  8  Device Dependent Error  A device dependent error occurred. See Appendix B page 407.

4  16  Execution Error  Parameter out of range! or instrument cannot execute a proper command because 
it would conflict with another instrument setting. 

5  32  Command Error  Unrecognized command or improper parameter count or type.

6  64  User Request  Not used by HP E1422

7  128  Power-On  Power has been applied to the instrument
Programming the HP E1422A for Data Acquisition and Control  139Chapter 4



s 
s. 

e 
For 
SCPI 
e 
TR 
 The 

e 

r 
his 

en it 

ive 

 

er. 
ition 
Enabling Events to
be Reported in the

Status Byte

There are two sets of registers that individual status conditions must pass 
through before that condition can be reported in the instrument’s Statu
Byte. These are the Transition Filter Registers and the Enable register
They provide selectivity in recording and reporting module status 
conditions.

Configuring the
Transition Filters

 Figure 4-10 shows that the Condition Register outputs are routed to th
input of the Negative Transition and Positive Transition Filter Registers. 
space reasons they are shown together but are controlled by individual 
commands. It is important to understand that whether an event from th
Condition Register was negative-going (NTR bit 1), or positive-going (P
bit 1), the Event Register always records the event by setting a bit to 1.
only way Event Register Bits are changed from 1 to 0 is with the 
STAT:...:EVENt?, STAT:PRESet, *CLS or *RST commands. Here is th
truth table for the Transition Filter Registers:

 The Power-on default condition is: All Positive Transition Filter Registe
bits set to one and all Negative Transition Filter Register bits set to 0. T
applies to both the Operation and Questionable Data Groups.

An Example using the Operation Group

Suppose that you wanted the module to report via the Status System wh
had completed executing *CAL?. The "Calibrating" bit (bit 0) in the 
Operation Condition Register goes to 1 when *CAL? is executing and 
returns to 0 when *CAL? is complete. In order to record only the negat
transition of this bit in the STAT:OPER:EVEN register you would send:

 STAT:OPER:PTR 32766 All ones in Pos Trans Filter 
register except bit 0=0

STAT:OPER:NTR 1 All zeros in Neg Trans Filter 
register except bit 0=1

Now when *CAL? completes and Operation Condition Register bit zero
goes from 1 to 0, Operation Event Register bit zero will become a 1. 

Configuring the
 Enable Registers

Figure 4-10 you will note that each Status Group has an Enable Regist
These control whether or not the occurrence of an individual status cond
will be reported by the group’s summary bit in the Status Byte.

Condition Reg Bit  PTRansition Reg Bit  NTRansition Reg Bit  Event Reg Bit

0→1  0  0 no change

1→0  0  0 no change

0→1  1  0 1

1→0  1  0 no change

0→1  0  1 no change

1→0  0  1 1

0→1  1  1 1

1→0  1  1 1
140 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



r 
 
is 

If 
he 
he 
Questionable Data Group Examples

If you only wanted the "FIFO Overflowed" condition to be reported by the 
QUE bit (bit 3) of the Status Byte, you would execute;

STAT:QUES:ENAB 1024 1024=decimal value for bit 10

If you wanted the "FIFO Overflowed" and "Setup Changed" conditions to 
be reported you would execute;

STAT:QUES:ENAB 9216 9216=decimal sum of values for 
bits 10 and 13

Operation Status Group Examples

If you only wanted the "FIFO Half Full" condition to be reported by the OPR 
bit (bit 7) of the Status Byte, you would execute;

STAT:OPER:ENAB 1024 1024=decimal value for bit 10

If you wanted the "FIFO Half Full" and "Scan Complete" conditions to be 
reported you would execute;

STAT:OPER:ENAB 1280 1280=decimal sum of values for 
bits 10 and 8

Standard Event Group Examples

If you only wanted the "Query Error", "Execution Error", and "Command 
Error" conditions to be reported by the ESB bit (bit 5) of the Status Byte, you 
would execute;

*ESE 52 52=decimal sum of values for 
bits 2, 4, and 5

Reading the Status
Byte

To check if any enabled events have occurred in the status system, you first 
read the Status Byte using the *STB? command. If the Status Byte is all 
zeros, there is no summary information being sent from any of the status 
groups. If the Status Byte is other than zero, one or more enabled events have 
occurred. You interpret the Status Byte bit values and take further action as 
follows:

Bit 3 (QUE)
 bit value 810 Read the Questionable Data Group’s Event Registe

using the STAT:QUES:EVENT? command. This will
return bit values for events which have occurred in th
group. After reading, the Event Register is cleared.

Note that bits in this group indicate error conditions. 
bit 8, 9 or 10 is set, error messages will be found in t
Error Queue. If bit 7 is set, error messages will be in t
error queue following the next *RST or cycling of 
power. Use the SYST:ERR? command to read the 
error(s).
Programming the HP E1422A for Data Acquisition and Control  141Chapter 4



ing 

 
es 
? 

 
is 

ting 
B? 
d the 

han 

 all 
orary 
imal 
 log 
Bit 4 (MAV)
 bit value 1610 There is a message available in the Output Queue. You 

should execute the appropriate query command.

 Bit 5 (ESB)
 bit value 3210 Read the Standard Event Group’s Event Register us

the *ESR? command. This will return bit values for 
events which have occurred in this group. After 
reading, this status register is cleared.

Note that bits 2 through 5 in this group indicate error
conditions. If any of these bits are set, error messag
will be found in the Error Queue. Use the SYST:ERR
command to read these.

Bit 7 (OPR)
 bit value 12810 Read the Operation Status Group’s Event Register 

using the STAT:OPER:EVENT? command. This will
return bit values for events which have occurred in th
group. After reading, the Event Register is cleared.

Clearing the Enable
Registers

To clear the Enable Registers execute:

STAT:PRESET for Operation Status and 
Questionable Data Groups

*ESE 0 for the Standard Event Group
*SRE 0 for the Status Byte Group

The Status Byte
Group’s Enable

Register

The Enable Register for the Status Byte Group has a special purpose. Notice 
in Figure 4-10 how the Status Byte Summary bit wraps back around to the 
Status Byte. The summary bit sets the RQS (request service) bit in the Status 
Byte. Using this Summary bit (and those from the other status groups) you 
can poll the Status Byte and check the RQS bit to determine if there are any 
status conditions which need attention. In this way the RQS bit is like the 
HP-IB’s SRQ (Service Request) line. The difference is that while execu
an HP-IB serial poll (SPOLL) releases the SRQ line, executing the *ST
command does not clear the RQS bit in the Status Byte. You must rea
Event Register of the group who’s summary bit is causing the RQS.

Reading Status
Groups Directly

You may want to directly poll status groups for instrument status rather t
poll the Status Byte for summary information.
 

 Reading Event Registers The Questionable Data, Operation Status, and Standard Event Groups
have Event Registers. These Registers log the occurrence of even temp
status conditions. When read, these registers return the sum of the dec
values for the condition bits set, then are cleared to make them ready to
further events. The commands to read these Event Registers are:
142 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



 
 
rs are:

ces 
l 

ify 
 the 
 
 and 
e 

 for 

 be 
e 

ntil 
rse 
HP 

he 
status 
 are 

d). 
ated 
STAT:QUES:EVENT? Questionable Data Group Event 
Register

STAT:OPER:EVENT? Operation Status Group Event 
Register

*ESR? Standard Event Group Event 
Register

Clearing Event Registers To clear the Event Registers without reading them execute:

*CLS clears all group’s Event 
Registers

Reading Condition
Registers

The Questionable Data and Operation Status Groups each have a Condition 
Register. The Condition Register reflects the group’s status condition in
"real-time". These registers are not latched so transient events may be
missed when the register is read. The commands to read these registe

STAT:QUES:COND? Questionable Data Group 
Condition Register

STAT:OPER:COND? Operation Status Group 
Condition Register

HP E1422 Background Operation
The HP E1422 inherently runs its algorithms and calibrations in the 
background mode with no interaction required from the driver. All resour
needed to run the measurements are controlled by the on board Contro
Processor (DSP).

The driver is required to setup the type of measurement to be run, mod
algorithm variables, and to unload data from the card after it appears in
CVT or FIFO. Once the INIT[:IMM] command is given, the HP E1422 is
initiated and all functions of the trigger system, measurement scanning,
algorithm execution are controlled by its on-board control processor. Th
driver returns to waiting for user commands. No interrupts are required
the HP E1422 to complete its measurement.

While the module is scanning and/or running algorithms, the driver can
queried for its status, and data can be read from the FIFO and CVT. Th
ABORT command may be given to force continuous execution to 
complete. Any changes to the measurement setup will not be allowed u
the TRIG:COUNT is reached, or an ABORT command is given. Of cou
any commands or queries can be given to other instruments while the 
E1422 is running algorithms.

Updating the Status System and VXIbus Interrupts
The driver needs to update the status system’s information whenever t
status of the HP E1422 changes. This update is always done when the 
system is accessed, or when CALibrate, INITiate, or ABORt commands
executed. Most of the bits in the OPER and QUES registers represent 
conditions which can change while the HP E1422 is measuring (initiate
In many circumstances it is sufficient to have the status system bits upd
Programming the HP E1422A for Data Acquisition and Control  143Chapter 4



, 
l be 

C, 

it in 

. If 

 the 
led 

CPI 
e is 
er is 
the next time the status system is accessed, or the INIT or ABORt commands 
are given. When it is desired to have the status system bits updated closer in 
time to when the condition changes on the HP E1422, the HP E1422 
interrupts can be used. 

The HP E1422 can send VXI interrupts upon the following conditions: 

•  Trigger too Fast condition is detected. Trigger comes prior to trigger 
system being ready to receive trigger. 

• FIFO overflowed. In either FIFO mode, data was received after the 
FIFO was full. 

• Overvoltage detection on input. If the input protection jumper has not 
been cut, the input relays have all been opened, and a *RST is required 
to reset the HP E1422. 

• Scan complete. The HP E1422 has finished a scan list. 
•  SCP trigger. A trigger was received from an SCP. 
• FIFO half full. The FIFO contains at least 32768 values.
• Measurement complete. The trigger system exited the "Wait-For- 

Arm". This clears the Measuring bit in the OPER register.
• Algorithm executes an "interrupt()" statement.

These HP E1422 interrupts are not always enabled since, under some 
circumstances, this could be detrimental to the users system operation. For 
example, the Scan Complete, SCP triggers, FIFO half full, and 
Measurement complete interrupts could come repetitively, at rates that 
would cause the operating system to be swamped processing interrupts. 
These conditions are dependent upon the user’s overall system design
therefore the driver allows the user to decide which, if any, interrupts wil
enabled. 

The way the user controls which interrupts will be enabled is via the *OP
STATUS:OPER/QUES:ENABLE, and STAT:PRESET commands.

Each of the interrupting conditions listed above, has a corresponding b
the QUES or OPER registers. If that bit is enabled via the 
STATus:OPER/QUES:ENABle command to be a part of the group 
summary bit, it will also enable the HP E1422 interrupt for that condition
that bit is not enabled, the corresponding interrupt will be disabled. 

 Sending the STAT:PRESET will disable all the interrupts from the HP 
E1422.

Sending the *OPC command will enable the measurement complete 
interrupt. Once this interrupt is received and the OPC condition sent to
status system, this interrupt will be disabled if it was not previously enab
via the STATUS:OPER/QUES:ENABLE command.

The above description is always true for a downloaded driver. In the C-S
driver, however, the interrupts will only be enabled if cscpi_overlap mod
ON when the enable command is given. If cscpi_overlap is OFF, the us
indicating they do not want interrupts to be enabled. Any subsequent 
144 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



ng 
 

e 

 of 
t fall 

able.

le 
changes to cscpi_overlap will not change which interrupts are enabled. Only 
sending *OPC or STAT:OPER/QUES:ENAB with cscpi_overlap ON will 
enable interrupts.

In addition the user can enable or disable all interrupts via the SICL calls, 
iintron() and iintroff(). 

Creating and Loading Custom EU Conversion Tables
The HP E1422 provides for loading custom EU conversion tables. This 
allows you to have on-board conversion of transducers not otherwise 
supported by the HP E1422.

Standard EU Operation The EU conversion tables built into the HP E1422 are stored in a "library" 
in the module’s non-volatile Flash Memory. When you link a specific 
channel to a standard EU conversion using the [SENSe:]FUNC:… 
command, the module copies that table from the library to a segment of 
RAM allocated to the specified channel. When a single EU conversion is 
specified for multiple channels, multiple copies of that conversion table are 
put in RAM, one copy into each channel’s Table RAM Segment. The 
conversion table-per-channel arrangement allows higher speed scanni
since the table is already loaded and ready to use when the channel is
scanned.

Custom EU Operation Custom EU conversion tables are loaded directly into a channel’s Tabl
RAM Segment using the DIAG:CUST:MXB and DIAG:CUST:PIEC 
commands. The DIAG:CUST:… commands can specify multiple channels. 
To "link" custom conversions to their tables you would execute the 
[SENSe:]FUNC:CUST <range>,(@<ch_list>) command. Unlike standard 
EU conversions, the custom EU conversions are already linked to their 
channels (tables loaded) before you execute the [SENSe:]FUNC:CUST 
command but the command allows you to specify the A/D range for these 
channels.

 NOTE The *RST command clears all channel Table RAM segments. Custom EU 
conversion tables must be re-loaded using the DIAG:CUST:… commands.

Custom EU Tables The HP E1422 uses two types of EU conversion tables, linear and piecewise. 
The linear table describes the transducer’s response slope and offset 
(y=mx+b). The piecewise conversion table gets its name because it is 
actually an approximation of the transducer’s response curve in the form
512 linear segments whose end-points fall on the curve. Data points tha
between the end-points are linearly interpolated. The built-in EU 
conversions for thermistors, thermocouples, and RTDs use this type of t

Custom Thermocouple
EU Conversions

The HP E1422 can measure temperature using custom characterized 
thermocouple wire of types E, J, K, N, R, S, and T. The custom EU tab
Programming the HP E1422A for Data Acquisition and Control  145Chapter 4



” on 

stom 
r the 
el(s) 
his 
re", 

ce 
nce 

n 

U 
422 
tile 

le 
generated for the individual batch of thermocouple wire is loaded to the 
appropriate channels using the DIAG:CUST:PIEC command. Since 
thermocouple EU conversion requires a "reference junction compensation" 
of the raw thermocouple voltage, the custom EU table is linked to the 
channel(s) using the command [SENSe:]FUNCtion:CUSTom:TCouple  
<type>[,<range>],(@<ch_list>).

The <type> parameter specifies the type of thermocouple wire so that the 
correct built-in table will be used for reference junction compensation. 
Reference junction compensation is based on the reference junction 
temperature at the time the custom channel is measured. For more 
information see “Thermocouple Reference Temperature Compensation
page 109.

Custom Reference
Temperature EU

Conversions

The HP E1422 can measure reference junction temperatures using cu
characterized RTDs and thermistors. The custom EU table generated fo
individually characterized transducer is loaded to the appropriate chann
using the DIAG:CUST:PIEC command. Since the EU conversion from t
custom EU table is to be considered the "reference junction temperatu
the channel is linked to this EU table using the command 
[SENSe:]FUNCtion:CUSTom:REFerence  [<range>,](@<ch_list>).

This command uses the custom EU conversion to generate the referen
junction temperature as explained in the section “Thermocouple Refere
Temperature Compensation” on page 109.

Creating Conversion
Tables

Contact your Hewlett-Packard System Engineer for more information o
Custom Engineering Unit Conversion for your application.

Loading Custom EU
Tables

There is a specific location in the E1422’s memory for each channel’s E
Conversion table. When standard EU conversions are specified, the E1
loads these locations with EU conversion tables copied from its non-vola
FLASH Memory. For Custom EU conversions you must load these tab
values using either of two SCPI commands.

Loading Tables for Linear Conversions

The DIAGnostic:CUSTom:MXB <slope>,<offset>, (@<ch_list>) sends the 
<slope> and <offset> parameters that allow the driver to calculate and 
download a custom linear Engineering Unit Conversion table to the 
HP E1422A for each channel specified.

• <slope> specifies the linear function’s 
"slope":

• <offset> specifies the conversion offset at zero input volts. This 
parameter is also commonly known as the "Y-intercept".

• <ch_list> specifies which channels will have this custom EU table 
loaded.

foutp1 foutp0–( ) Vin1 Vin0–( )⁄
146 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



Usage Example

Your program puts table constants into array table_block  
DIAG:CUST:MXB 2.2,19,(@132:163) send table for chs 32-63 to

HP E1422
SENS:FUNC:CUST 1,(@132:163) link custom EU with chs 32-63 

and set the 1V A/D range
INITiate then TRIGger module

Loading Tables for Non Linear Conversions

The DIAGnostic:CUSTom:PIECewise <table_range>,<table_block>, 
(@<ch_list>) command downloads a custom piecewise Engineering Unit 
Conversion table to the HP E1422 for each channel specified.

• <table_block> is a block of 1,024 bytes that define 512 16-bit values. 
SCPI requires that <table_block> include the definite length block 
data header. The VXIplug&play function 
hpe1422_sendBlockInt16(...) adds the header for you. Contact your 
Hewlett-Packard System Engineer for more information on creating 
piecewise custom EU tables

• <table_range> specifies the range of input voltage that the table 
covers (from -<table_range> to +<table_range>). The value you 
specify must be within 5% of: .015625 | .03125 | .0625 | .125 | .25 | .5 | 
1 | 2 | 4 | 8 | 16 | 32 | 64.

• <ch_list> specifies which channels will have this custom EU table 
loaded.

Usage Example

Your program puts table constants into array table_block  
DIAG:CUST:PIEC table_block,1,(@124:131) send table for chs 24-31 to

HP E1422
SENS:FUNC:CUST 1,(@124:131) link custom EU with chs 24-31 

and set the 1V A/D range
INITiate then TRIGger module

Summary The following points describe the capabilities of custom EU conversion:

• A given channel only has a single active EU conversion table assigned 
to it. Changing tables requires loading it with a DIAG:CUST:… 
command.

• The limit on the number of different custom EU tables that can be 
loaded in an HP E1422 is the same as the number of channels.

• Custom tables can provide the same level of accuracy as the built-in 
tables. In fact the built-in resistance function uses a linear conversion 
table, and the built -in temperature functions use the piecewise 
conversion table.
Programming the HP E1422A for Data Acquisition and Control  147Chapter 4



. 
 

 

hat 
 
 
 

, 

e the 
 the 
re 
ll 
ost 

en 
are 
" by 

 the 
e 
 the 
t has 

alue 

 +0.1 
 

Compensating for System Offsets

System Wiring Offsets The HP E1422 can compensate for offsets in your system’s field wiring
Apply shorts to channels at the Unit-Under-Test (UUT) end of your field
wiring, and then execute the CAL:TARE (@<ch_list>) command. The 
instrument will measure the voltage at each channel in <ch_list> and save 
those values in RAM as channel Tare constants.

 Important Note for
Thermocouples

• You must not use CAL:TARE on field wiring that is made up of 
thermocouple wire. The voltage that a thermocouple wire pair 
generates can not be removed by introducing a short anywhere 
between its junction and its connection to an isothermal panel (either 
the HP E1422’s Terminal Module or a remote isothermal reference
block). Thermal voltage is generated along the entire length of a 
thermocouple pair where there is any temperature gradient along t
length. To CAL:TARE thermocouple wire this way would introduce
an unwanted offset in the voltage/temperature relationship for that
thermocouple. If you inadvertently CAL:TARE a thermocouple wire
pair, see “Resetting CAL:TARE” on page 149.

• You should use CAL:TARE to compensate wiring offsets (copper 
wire, not thermocouple wire) between the HP E1422 and a remote 
thermocouple reference block. Disconnect the thermocouples and 
introduce copper shorting wires between each channel’s HI and LO
then execute CAL:TARE for these channels.

Residual Sensor Offsets To remove offsets like those in an unstrained strain gage bridge, execut
CAL:TARE command on those channels. The module will then measure
offsets and as in the wiring case above, remove these offsets from futu
measurements. In the strain gage case, this "balances the bridge" so a
measurements have the initial unstrained offset removed to allow the m
accurate high speed measurements possible.

Operation After CAL:TARE <ch_list> measures and stores the offset voltages, it th
performs the equivalent of a *CAL? operation. This operation uses the T
constants to set a DAC which will remove each channel offset as "seen
the module’s A/D converter.

The absolute voltage level that CAL:TARE can remove is dependent on
A/D range. CAL:TARE will choose the lowest range that can handle th
existing offset voltage. The range that CAL:TARE chooses will become
lowest usable range (range floor) for that channel. For any channel tha
been "CAL:TAREd" Autorange will not go below that range floor and 
selecting a manual range below the range floor will return an Overload v
(see the table “Maximum CAL:TARE Offsets” on page 149).

As an example assume that the system wiring to channel 0 generates a
Volt offset with 0 Volts (a short) applied at the UUT. Before CAL:TARE
148 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



an 

and 
 be 

n 
R 

s 

ET, 

ment 
its

tion 
nd 

r the 
e if 
ain 
the module would return a reading of 0.1 Volt for channel 0. After 
CAL:TARE (@100), the module will return a reading of 0 Volts with a short 
applied at the UUT and the system wiring offset will be removed from all 
measurements of the signal to channel 0. Think of the signal applied to the 
instrument’s channel input as the gross signal value. CAL:TARE removes 
the tare portion leaving only the net signal value.

Because of settling times, especially on filtered channels, CAL:TARE c
take a number of minutes to execute.

The tare calibration constants created during CAL:TARE are stored in 
are usable from the instrument’s RAM. If you want the Tare constants to
stored in non-volatile Flash Memory you can execute the 
CAL:STORE TARE command.

 NOTE The HP E1422’s Flash Memory has a finite lifetime of approximately te
thousand write cycles (unlimited read cycles). While executing CAL:STO
once every day would not exceed the lifetime of the Flash Memory for 
approximately 27 years, an application that stored constants many time
each day would unnecessarily shorten the Flash Memory’s lifetime.

Resetting CAL:TARE If you wish to "undo" the CAL:TARE operation, you can execute 
CAL:TARE:RESet then *CAL?/CAL:SET. If current Tare calibration 
constants have been stored in Flash Memory, execute CAL:TARE:RES
then CAL:STORE TARE.

Special
Considerations

Here are some things to keep in mind when using CAL:TARE.
 

 Maximum Tare
Capability

The tare value that can be compensated for is dependent on the instru
range and SCP channel gain settings. The following table lists these lim

Changing Gains or
Filters

If you decide to change a channel’s SCP setup after a CAL:TARE opera
you must perform a *CAL? operation to generate new DAC constants a
reset the "range floor" for the stored Tare value. You must also conside
tare capability of the range/gain setup you are changing to. For instanc
the actual offset present is 0.6 Volts and was "Tared" for a 4 Volt range/G

Maximum CAL:TARE Offsets
A/D range
±V F.Scale

Offset V
Gain x1

Offset V
Gain x8

Offset V
 Gain x16

Offset V
Gain x64

16  3.2213  .40104  .20009  .04970

 4  .82101  .10101  .05007  .01220
 1  .23061  .02721  .01317  .00297

 .25  .07581  .00786  .00349  .00055

 .0625  .03792  .00312  .00112  n/a
Programming the HP E1422A for Data Acquisition and Control  149Chapter 4



E 
n. 

ou 
RE 

pen 
P 
he 
W 
l will 
ll 
 4-11 
x1 setup, moving to a 1 Volt range/Gain x1 setup will return Overload 
values for that channel since the 1 Volt range is below the range floor as set 
by CAL:TARE. See Table 6-1 on page 262 for more on values returned for 
Overload readings.

Unexpected Channel
Offsets or Overloads

This can occur when your HP E1422’s Flash Memory contains CAL:TAR
offset constants that are no longer appropriate for its current applicatio
Execute CAL:TARE:RESET then *CAL? to reset the tare constants in 
RAM. Measure the affected channels again. If the problems go away, y
can now reset the tare constants in Flash memory by executing CAL:STO
TARE.

Detecting Open Transducers
Most of the HP E1422’s analog input SCPs provide a method to detect o
transducers. When Open Transducer Detect (OTD) is enabled, the SC
injects a small current into the HIGH and LOW input of each channel. T
polarity of the current pulls the HIGH inputs toward +17 volts and the LO
inputs towards -17 volts. If a transducer is open, measuring that channe
return an over-voltage reading. OTD is available on a per SCP basis. A
eight channels of an SCP are enabled or disabled together. See Figure
for a simplified schematic diagram of the OTD circuit.

Signal Conditioning Plug-on
MultiplexerSignal Input

High

Low

100M

-17V

3K

Gnd.

3K

100M

+17V

High

Low

Figure 4-11. Simplified Open Transducer Detect Circuit
150 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



s 

r 
 

ll set 
still 
to 
e 

 
ad 

nd 
els.
 NOTES 1. When OTD is enabled, the inputs have up to 0.2µA injected into 
them. If this current will adversely affect your measurement, but you 
still want to check for open transducers, you can enable OTD, run 
your algorithms, check analog input variables for measurement 
values that indicate an open transducer, then disable OTD and run 
your algorithms without it. The HP E1422’s accuracy specification
apply only when OTD is off.

2. When a channel’s SCP filtering is enabled, allow 15 seconds afte
turning on OTD for the filters capacitors to charge before checking
for open transducers.

To enable or disable Open Transducer Detection, use the 
DIAGnostic:OTDetect[:STATe] <enable>, (@<ch_list>) command.

• The enable parameter can specify ON or OFF
• An SCP is addressed when the ch_list parameter specifies a channel 

number contained on the SCP. The first channel on each SCP is:
 0, 8, 16, 24, 32, 40, 48, and 56

To enable Open Transducer Detection on all channels on SCPs 1 and 3:
DIAG:OTD ON, (@100,116) 0 is on SCP 1 and 16 is on SCP3

To disable Open Transducer Detection on all channels on SCPs 1 and 3:
DIAG:OTD OFF, (@100,116)  

More On Auto Ranging
There are rare circumstances where your input signal can be difficult for the 
HP E1422 to auto range correctly. The module completes the range 
selection based on your input signal about 6 µsec before the actual 
measurement is made on that channel. If during that period your signal 
becomes greater than the selected range can handle, the module will return 
an overflow reading (±INFinity).

To cure this problem, use the DIAGnostic:FLOor <range>,(@<ch_list>) 
command. Include the problem channel(s) in <ch_list> and specify the 
lowest range you want auto range to select for those channels. This wi
a range "floor" for these channels that auto range can’t go below while 
allowing auto range to select higher ranges as necessary. If you need 
specify more than one range floor for different channel sets, execute th
DIAG:FLOOR command multiple times.

The DIAGnostic:FLOor:DUMP command sends the current range floor
settings for all 64 channels to the FIFO. Use DATA:FIFO:PART? 64 to re
these values.

The auto range floor settings remain until another DIAG:FLOOR comma
changes them, or a *RST resets them to the lowest range for all chann
Programming the HP E1422A for Data Acquisition and Control  151Chapter 4



ter 
or 
wer 
st the 
y 
 to a 
s 

ces 

ath to 
re). 
irect 

ured 
t is 
rent 

onger 
er 
utput 
d 14 

els 

t 

g 
mple 

ple 
Settling Characteristics
Some sequences of input signals as determined by their order of appearance 
in a scan list can be a challenge to measure accurately. This section is 
intended to help you determine if your system presents any of these 
problems and how best to eliminate them or reduce their effect.

Background While the HP E1422 can auto-range, measure, and convert a reading to 
engineering units as fast as once every 10 µs, measuring a high level signal 
followed by a very low level signal may require some extra settling time. As 
seen from the point of view of the HP E1422’s Analog-to-Digital conver
and its Range Amplifier, this situation is the most difficult to measure. F
example lets look at two consecutive channels; the first measures a po
supply at 15.5 volts, the next measures a thermocouple temperature. Fir
input to the Range Amplifier is at 15.5 volts (near its maximum) with an
stray capacitances charged accordingly, then it immediately is switched
thermocouple channel and down-ranged to its .0625 volt range. On thi
range, the resolution is now 1.91 µvolt per Least Significant Bit (LSB). 
Because of this sensitivity, the time to discharge these stray capacitan
may have to be considered.

Thus far in the discussion, we’ve assumed that the low-level channel 
measured after a high-level channel has presented a low impedance p
discharge the A/D’s stray capacitances (path was the thermocouple wi
The combination of a resistance measurement through an HP E1501 D
Input SCP presents a much higher impedance path. A very common 
measurement like this would be the temperature of a thermistor. If meas
through a Direct Input SCP, the source impedance of the measuremen
essentially the value of the thermistor (the output impedance of the cur
source is in the gigohm region). Even though this is a higher level 
measurement than the previous example, the settling time can be even l
due to the slower discharge of the stray capacitances. The simple answ
here is to always use an SCP that presents a low impedance buffered o
to the HP E1422’s Range Amp and A/D. The HP E1503, 8, 9, 10, 12, an
through 17 SCPs all provide this capability.

Checking for
Problems

The method we’ll use to quickly determine if any of your system’s chann
needs more settling time is to simply apply some settling time to every 
channel. Use this procedure:

1. First run your system to make a record of its current measuremen
performance.

2. Then use the SAMPle:TIMer command to add a significant settlin
delay to every measurement in the scan list. Take care that the sa
time multiplied by the number of channels in the scan list doesn’t 
exceed the time between triggers.

3. Now run your system and look primarily for low level channel 
measurements (like thermocouples) who’s DC value changes 
somewhat. If you find channels that respond to this increase in sam
152 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



lity 
hods 
ood 

ach 
ier 

 .5, 

lt 
uple 
fier 
o 
5.5 
duce 
ents 
. At 

 the 
her 
r has 
s 
period, you may also notice that these channels may return slightly 
quieter measurements as well. The extra sample period reduces or 
removes the affected channels coupling to the value of the channel 
measured just before it.

4. If you see some improvement, increase the sample period again and 
perform another test. When you increase the sample period and no 
improvement is seen, you have found the maximum settling delay 
that any single channel requires.

5. If the quality of the measurements does not respond to this increase in 
sample period, then inadequate settling time is not likely to be 
causing measurement problems.

Fixing the Problem If your system scans fast enough with the increased sample period, your 
problem is solved. Your system is only running as fast as the slowest channel 
allows but if its fast enough that’s OK. If on the other hand, getting qua
readings has slowed your scan rate too much, there are two other met
that will, either separately or in combination, have your system making g
measurements as fast as possible.

Use Amplifier SCPs Amplifier SCPs can remove the need to increase settling delays. How? E
gain factor of 4 provided by the SCP amplifier allows the Range Amplif
to be set one range higher and still provide the same measurement 
resolution. Amplifier SCPs for the HP E1422 are available with gains of
8, 16, 64, and 512. Lets return to our earlier example of a difficult 
measurement where one channel is measuring 15.5 volts on the 16 vo
range, and the next a thermocouple on the .0625 range. If our thermoco
channel is amplified through an SCP with a gain of 16, the Range Ampli
can be set to the 1 volt range. On this range the A/D resolution drops t
around 31 µvolt per LSB so the stray capacitances discharging after the 1
volt measurement are now only one sixteenth as significant and thus re
any required settling delay. Of course for most thermocouple measurem
we can use a gain of 64 and set the Range Amplifier to the 4 volt range
this setting the A/D resolution for one LSB drops to about 122µvolts and 
further reduces or removes any need for additional settling delay. This 
improvement is accomplished without any reduction of the overall 
measurement resolution.

 NOTE Filter-amplifier SCPs can provide improvements in low-level signal 
measurements that go beyond just settling delay reduction. Amplifying
input signal at the SCP allows using less gain at the Range Amplifier (hig
range) for the same measurement resolution. Since the Range Amplifie
to track signal level changes (from the multiplexer) at up to 100 KHz, it
bandwidth must be much higher than the bandwidth of individual 
filter-amplifier SCP channels. Using higher SCP gain along with lower 
Range Amplifier gain can significantly increase normal-mode noise 
rejection.
Programming the HP E1422A for Data Acquisition and Control  153Chapter 4



Adding Settling Delay for
Specific Channels

This method adds settling time only to individual problem measurements as 
opposed to the SAMPle:TIMer command that introduces extra time for all 
analog input channels. If you see problems on only a few channels, you can 
use the SENS:CHAN:SETTLING <num_samples>,(@<ch_list>) 
command to add extra settling time for just these problem channels. What 
SENS:CHAN:SETTLING does is instruct the HP E1422 to replace single 
instances of a channel in the Scan List with multiple repeat instances of that 
channel if it is specified in (@<ch_list>). The number of repeats is set by 
<num_samples>.

Example:

Normal Scan List:
 100, 101, 102, 103, 104

 Scan List after SENS:CHAN:SETT 3,(@100,103)
 100, 100, 100, 101, 102, 103, 103, 103, 104

When the algorithms are run, channels 0 and 3 will be sampled 3 times, and 
the final value from each will be sent to the Channel Input Buffer. This 
provides extra settling time while channels 1, 2, and 4 are measured in a 
single sample period and their values also sent to the Channel Input Buffer.
154 Programming the HP E1422A for Data Acquisition and Control  Chapter 4



56
58

   159
 160
  161
161
163
64
64
165
166

166
  167
70
74
74
75
175
76
78
78
178
 181
  181
Chapter 5

Creating and Running Algorithms

 Learning Hint This chapter builds upon the "HP E1422 Programming Model" information 
presented in Chapter 4. You should read that section before moving on to 
this one. 

About This Chapter
This chapter describes how to write algorithms that apply the HP E1422’s 
measurement, calculation, and control resources. It describes these 
resources and how you can access them with the HP E1422’s Algorithm 
Language. This manual assumes that you have programming experience 
already. Ideally, you have programmed in the ’C’ language since the 
HP E1422’s Algorithm Language is based on ’C’. Following the tutorial 
sections of this chapter is an Algorithm Language Reference. The contents 
of this chapter are:

• Overview of the Algorithm Language  . . . . . . . . . . . . . . . . . . . . .    1
• The Algorithm Execution Environment . . . . . . . . . . . . . . . . . . . .    1
• Accessing the E1422's Resources . . . . . . . . . . . . . . . . . . . . . . . . .

-- Accessing I/O Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
-- Accessing Remote Scan Status Variables . . . . . . . . . . . . . . . . .  
-- Runtime Remote Scan Verification. . . . . . . . . . . . . . . . . . . . . .    
-- Defining and Accessing Global Variables. . . . . . . . . . . . . . . . .    
-- Determining First Execution (First_loop). . . . . . . . . . . . . . . . .    1
-- Initializing Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
-- Sending Data to the CVT and FIFO . . . . . . . . . . . . . . . . . . . . .    
-- Setting a VXIbus Interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
-- Determining Your Algorithm's Identity (ALG_NUM) . . . . . . .    166
-- Calling User Defined Functions . . . . . . . . . . . . . . . . . . . . . . . .    

• Operating Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
• Defining Algorithms (ALG:DEF). . . . . . . . . . . . . . . . . . . . . . . . .    1
• A Very Simple First Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . .    1
• Modifying an Example PID Algorithm  . . . . . . . . . . . . . . . . . . . .    1
• Algorithm to Algorithm Communication . . . . . . . . . . . . . . . . . . .    1

Communication Using Channel Identifiers. . . . . . . . . . . . . . . .    
Communication Using Global Variables. . . . . . . . . . . . . . . . . .    1

• Non-Control Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
Process Monitoring Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .    1

• Implementing Setpoint Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . .    
• Algorithm Language Reference  . . . . . . . . . . . . . . . . . . . . . . . . . .   

-- Standard Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . . . . .  
Creating and Running Algorithms  155Chapter 5



  186
  190
190
 191
 191
192
 193
 194

l 
rol 

an 

as 
lity 
you 
d 

 can 

ster 

u are 
eed 
 
n 
-- Special HP E1422 Reserved Keywords  . . . . . . . . . . . . . . . . . .    181
-- Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    181
-- Special Identifiers for Channels  . . . . . . . . . . . . . . . . . . . . . . . .    182
-- Special Identifiers for Remote Scan Status . . . . . . . . . . . . . . . .    182
-- Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    182
-- Intrinsic Functions and Statements . . . . . . . . . . . . . . . . . . . . . .    183
-- Program Flow Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    183
-- Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    184
-- Data Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    185
-- Bitfield Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    185

• Language Syntax Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
• Program Structure and Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-- Declaring Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
-- Assigning Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
-- The Operations Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
-- Conditional Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
-- Comment Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
-- Overall Program Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

Overview of the Algorithm Language
The HP 1422A's Algorithm Language is a limited version of the 'C' 
programming language. It is designed to provide the necessary contro
constructs and algebraic operations to support measurement and cont
algorithms. There are no loop constructs, multi-dimensional arrays, or 
transcendental functions. Further, an algorithm must be completely 
contained within a single function subprogram 'ALGn'. The algorithm c
not call another user-written function subprogram.

It is important to note, that while the HP E1422A's Algorithm Language h
a limited set of intrinsic arithmetic operators, it also provides the capabi
to call special user defined functions "f(x)". Appendix E page 425shows 
how to convert user defined functions into  piece-wise linear interpolate
tables which can be downloaded into the HP E1422A. The HP E1422A
extract function values from these tables in approximately 18µseconds 
regardless of the function's original complexity. This method provides fa
algorithm execution by moving the complex math operations off-board.

This section assumes that you already program in some language. If yo
already a 'C' language programmer, this chapter is all you'll probably n
to create your algorithm. If you are not familiar with the C programming
language, you should study the "Program Structure and Syntax" sectio
before you begin to write your algorithms.

This section will present a quick look at the Algorithm Language. The 
complete language reference is provided later in this chapter.

Arithmetic Operators: add +, subtract -, multiply *, divide /   
NOTE: See “Calling User Defined Functions” on page 166.

Assignment Operator: =
156 Creating and Running Algorithms  Chapter 5



Comparison Functions: less than <, less than or equal <=, greater than 
>, greater than or equal >=, equal to ==, not equal to !=

Boolean Functions: and &&, or ||, not !

Variables: scalars of type  static float,  and single dimensioned arrays of 
type  static float limited to 1024 elements.

Constants:
32-bit decimal integer; Dddd... where D and d are decimal digits but D is 
not zero. No decimal point or exponent specified.
32-bit octal integer; 0oo... where 0 is a leading zero and o is an octal digit. 
No decimal point or exponent specified.
32-bit hexadecimal integer; 0Xhhh... or 0xhhh... where h is a hex digit.
32-bit floating point; ddd.,  ddd.ddd,  ddde±dd,  dddE±dd, ddd.dddedd, 
or ddd.dddEdd where d is a decimal digit.

Flow Control: conditional construct   if(){ } else { }

Intrinsic Functions:
Return minimum;   min(<expr1>,<expr2>)
Return maximum;   max(<expr1>,<expr2>)
User defined function;   <user_name>(<expr>)
Write value to CVT element;   writecvt(<expr>,<expr>)
Write value to FIFO buffer;   writefifo(<expr>)
Write value to both CVT and FIFO;   writeboth(<expr>,<expr>)

Example Language
Usage

Here are examples of some Algorithm Language elements assembled to 
show them used in context. Later sections will explain any unfamiliar 
elements you see here:

Example 1;
/*** get input from channel 8, calculate output, check limits, output to ch 16 & 17 ***/ 
static float output_max = .020; /* 20 mA max output */
static float output_min = .004; /* 4 mA min output */
static float input_val, output_val; /* intermediate I/O vars */
static float remote_input_val; /* I/O var for remote channel*/

input_ val = I108; /* get value from input buffer channel 8*/
remote_input_ val = I14001; /* get value from input buffer channel 4001*/
output_val = 12.5 * input_val; /* calculate desired output */
if ( output_val > output_max ) /* check output greater than limit */

output_val = output_max; /* if so, output max limit */
else if( output_val < output_min) /* check output less than limit */

output_val = output_min; /* if so, output min limit */
O116 = output_val / 2; /* split output_val between two SCP  */
O117 = output_val / 2; /* channels to get up to 20mA max    */
writecvt(remote_input_val,501); /* remote chan val to CVT element 501 */

Example 2;
/*** same function as example 1 above but shows a different approach ***/ 
static float max_output = .020; /* 20 mA max output */
static float min_output = .004; /* 4 mA min output */

/* following lines input, limit output between min and max_output, and outputs.    */
/* output is split to two current output channels wired in parallell to provide 20mA */
Creating and Running Algorithms  157Chapter 5



/* write cvt is just to show access to remote channel
O116 = max( min_output, min( max_output, (12.5 * I108) / 2 ) );
O117 = max( min_output, min( max_output, (12.5 * I108) / 2 ) );
writecvt(I14001,501);

The Algorithm Execution Environment
This section describes the execution environment that the HP E1422 
provides for your algorithms. Here we describe the relationship of your 
algorithm to the main() function that calls it.

The Main Function All ’C’ language programs consist of one or more functions. A ’C’ program 
must have a function called main(). In the HP E1422, the main() function is 
usually generated automatically by the driver when you execute the INIT 
command. The main() function executes each time the module is triggered, 
and controls execution of your algorithm functions. See Figure 5-1 for a 
partial listing of main().

How Your
Algorithms Fit In

When the module is INITiated, a set of control variables and a function 
calling sequence is created for all algorithms you have defined. The value of 
variable "State_n" is set with the ALGorithm:STATe command and 
determines whether the algorithm will be called. The value of "Ratio_n" is 
set with the ALGorithm:SCAN:RATio command and determines how often 
the algorithm will be called (relative to trigger events).

Since the function-calling interface to your algorithms is fixed in the main() 
function, the "header" of your algorithm function is also pre-defined. This 
means that unlike standard ’C’ language programming, your algorithm 
program (a function) need not (must not) include the function declaration 
header, opening brace "{", and closing brace "}". You only supply the 
"body" of your function, the HP E1422’s driver supplies the rest.

Think of the program space in the HP E1422 in the form of a source file with 
any global variables first, then the main() function followed by as many 
algorithms as you have defined. Of course what is really contained in the 
HP E1422’s algorithm memory are executable codes that have been 
translated from your downloaded source code. While not an exact 
representation of the algorithm execution environment, Figure 5-1 shows 
the relationship between a normal ’C’ program and two HP E1422 
algorithms.
158 Creating and Running Algorithms  Chapter 5



Accessing the E1422’s Resources
This section describes how your algorithm accesses hardware and software  
resources provided by the HP E1422. The following is a list of these 
resources:

• I/O channels.
• Remote Scan Status variables
• Global variables defined before your algorithm is defined.
• The constant ALG_NUM which the HP E1422 makes available to 

your algorithm. ALG_NUM = 1 for ALG1, 2 for ALG2 etc.
• User defined functions defined with the ALG:FUNC:DEF command. 
• The Current Value Table (CVT), and the data FIFO buffer (FIFO) to 

output algorithm data to your application program.

/* GLOBALS you define with ALG:DEF GLOBALS...  go here */

/* global variable First_loop equals 1 until all algorithms called  */
static float First_loop; /* global value set to 1 at each INIT */
/**************************** function main() ****************************/
/*The HP E1422 driver creates main() at INIT time. This example 
shows a main created after 2 algorithms have been defined. */
main()
{

/********* declaration of variables local to main() ********/
static float State_1, Ratio_1, Count_1;  /* created if alg1 defined */
static float State_2, Ratio_2, Count_2;  /* created if alg2 defined */

/********* this section created if ALG1 is defined ********/
Count_1 = Count_1 - 1; /* Count_1 used for ALG:SCAN:RATIO */
if (Count_1 <= 0) {         /* test for ratio met (<=0 means execute)*/ 

Count_1 = Ratio_1;   /* Count_1 = ALG:SCAN:RATIO setting  */
if (State_1) alg1();     /* if ALG:STATE ALG1,ON, call alg1       */

}

/********* this section created if ALG2 is defined ********/
Count_2 = Count_2 - 1; /* Count_2 used for ALG:SCAN:RATIO */
if (Count_2 <= 0) {         /* test for ratio met (<=0 means execute)*/ 

Count_2 = Ratio_2;   /* Count_2 = ALG:SCAN:RATIO setting  */
if (State_2) alg2();     /* if ALG:STATE ALG2,ON, call alg2        */

}
First_loop = 0;   /* reset First_loop after last alg has been called */

}
/* ************************ end function main() *************************/

ALG1()  /* this function shell created by ALG:DEF ’ALG1’....    */
{
const int ALG_NUM = 1; /* created by driver to ID this algorithm */

/********* Your algorithm code goes here **********/
}

ALG2()  /* this function shell created by ALG:DEF ’ALG2’....    */
{
const int ALG_NUM = 2; /* created by driver to ID this algorithm */

/********* Your algorithm code goes here **********/
}

Begin algorithm "shells"
(built by HP E1422’s driver)

End main() function

Begin main() function
(built by HP E1422’s driver)

Global variables area

First_loop declared by
HP E1422’s driver

Figure 5-1. Source Listing of Function mai

Your algorithms go here
Creating and Running Algorithms  159Chapter 5



• VXIbus Interrupts.

Accessing I/O
Channels

In the Algorithm Language, channels are referenced as pre-defined variable 
identifiers. Because input channels could be from Remote Signal 
Conditioning Units (RSCUs), there are two forms of input channel syntax. 
The general on-board input channel identifier syntax is "I1cc" where cc is a 
channel number from 00 (channel 0) through 63 (channel 63). The Remote 
input channel syntax is "I1ccrr" where cc is the SCP channel number (one of 
00, 01, 08, 09, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 56, or 57), and rr is the 
channel (0 through 31) on the RSCU see the heading "Remote Channels:" 
on page 203 for more information. For output channels the syntax is "O1cc" 
where cc is a channel number from 00 (channel 0) through 63 (channel 63). 
Like all HP E1422 variables, channel identifier variables always contain 
32-bit floating point values even when the channel is part of a digital I/O 
SCP. If the digital I/O SCP has 8-bit channels (like the HP E1533), the 
channel’s identifiers (O1cc and I1cc) can take on the values 0 through 255. 
To access individual bit values you may append ".Bn" to the normal channel 
syntax; where n is the bit number (0 through 7). If the Digital I/O SCP has 
single-bit channels (like the HP E1534), its channel identifiers can only take 
on the values 0 and 1. Examples:

O100 = 1; assign value to output chan 0 on 
HP E1534.

Inp_val = I108; from 8-bit channel on HP E1533 
Inp_val will be 0. to 255.
np_val will be 0. to 255.

Bit_4 = I109.B4; assign  HP E1533 chan 9 bit 4 to 
variable Bit_4 

Output Channels

Output channels can appear on either or both sides of an assignment 
operator. They can appear anywhere other variables can appear. Examples:

O100 = 12.5; send value to output channel 
buffer element 0

O108.B4 = ! O108.B4; compliment value found in 
output channel buffer element 8, 
bit 4 each time algorithm is 
executed.

writecvt(O116,350); send value of output channel 16 
to CVT element 350

Input Channels

Input channel identifiers can only appear on the right side of assignment 
operators. It doesn’t make sense to output values to an input channel. Other 
than that, they can appear anywhere other variables can appear. Examples:

dig_bit_value = I108.B0; retrieve value from Input 
Channel Buffer element 8, bit 0

inp_value = I124; retrieve value from Input 
Channel Buffer element 24

rscu_value = I12422; retrieve value from RSCU 
Channel Buffer element 2422

O156 = 4 * I124; retrieve value from Input 
160 Creating and Running Algorithms  Chapter 5



t the 

 be 
hat 

ted 

he 
Channel Buffer element 24, 
multiply by 4 and send result to 
Output Channel Buffer element 
56

writefifo(I124); send value of input channel 24 to 
FIFO buffer

Defined Input and Output
Channels

Your algorithm "references" channels. It can reference input or output 
channels. But, in order for these channels to be available to your algorithm 
they must be "defined". What we mean by "defined" is that an SCP or RSCU 
must be installed, and an appropriate SOURce or SENSe :FUNCtion must 
explicitly (or implicitly, in the case of HP E1531&32 SCPs) be tied to the 
channels. If your algorithm references an input channel identifier that is not 
configured as an input channel, or an output channel identifier that is not 
configured as an output channel, the driver will generate an error when your 
algorithm is defined with ALG:DEF.

Accessing Remote
Scan Status

Variables

There are two remote scan status variables for each HP E1539A SCP. The 
variable syntax is "S1<xx>" where <xx> can be one of 00, 01, 08, 09, 16, 
17, 24, 25, 32, 33, 40, 41, 48, 49, 56, and 57. These values are 16 possible 
on-board channels for HP E1539A SCPs. These variables are treated as 
input channels and can only be read from, not written to.  The returned value 
represents the operational status of the RSCU connected to the SCP channel.

The possiblevalues are: 0=normal operation, 1=RSCU cable disconnected 
after INIT, and 2=RSCU scan list is out of synchronization (scan trigger 
problem during RSCU’s scan).

Runtime Remote
Scan Verification

For most data acquisition and control applications, you need to know tha
data acquired via a Remote Signal Conditioning Unit (RSCU) is not 
corrupted at runtime. Though the E1422A/RSCU system is designed to
very robust and to normally acquire reliable data, there is a possibility t
remote data can be corrupted in the following ways: 

• The remote box (RSCU) may lose power after a scan is initialized. 
• The cable to the remote box may become disconnected or damaged 

during the scanning process.
• The multiplexer in the remote box may lose synchronization with the 

host E1422A due to false or missing triggers. 

For all of these conditions, the E1422A/RSCU system should report the 
existence of corrupted data immediately to the host system.

Runtime Scan States The Remote Signal Conditioning Unit’s (RSCU) runtime scan can be 
described as being in one of the following 3 states:  normal, disconnec
and out of synch. In the disconnected state, the E1422A fails to 
communicate with an RSCU for various reasons (power down, no 
connection, a malfunction in the cable, etc.). In the out of synch state, t
RSCU channel switching multiplexer could be out of synch with the 
E1422A due to an extra or missing trigger. 
Creating and Running Algorithms  161Chapter 5



alue 

trol 

d do 
Algorithm Language
Support

Since each RSCU is connected to one of the main channels in the host 
E1422A, the operating status of each RSCU during the scanning can be 
represented by the status of the corresponding main channel. A block of 
memory has been reserved to hold the status for each main channel that is 
connected to an RSCU. Referencing Scan Status variable in an algorithm 
will return the operating status of the specified RSCU.

The language support for status reporting is designed as follows: 

Scan status variables have the syntax S1xx. S stands for Status. 1xx is the 
corresponding main channel that is connected to an RSCU. Though the 
possible range for main channels on an E1422A is 00 to 63, not all of the 
main channels are valid for an RSCU connection. Therefore the current valid 
range for xx is the set of discrete numbers (00, 01, 08, 09, 16, 17, 24, 25, 32, 
33, 40, 41, 48, 49, 56, 57). For example, in order to read the operating status 
of an RSCU connected to channel 24 of an E1422A, you would reference 
S124 in the algorithm. S1xx is treated as an input channel, and can only be 
read from, not written to.

Currently S1xx can be in one of the three states, which are represented by 0, 
1, and 2. 

• S1xx is 0, when RSCU is in the normal state. 
• S1xx is 1, when RSCU is in the disconnected state. 
• S1xx is 2, when RSCU is in the out of synch state. 

Operating Model Scan Status Variables are updated just after the all channels are scanned in 
the Input Phase (refer to “The Operating Sequence” on page 127). The v
of the scan status variables is available to your algorithms when they 
execute.

Example Scan
Verification Algorithms

Following are some simple examples demonstrating the use of scan 
verification in an algorithm. 

By using S1xx in an algorithm, you can achieve various results for con
or data acquisition applications. Assuming that one is interested in 
monitoring the scan state of an RSCU at E1422A channel 25, you coul
one of the following:

1. In the E1422A algorithm: 

if( S125 != 0) {
/* User application specific algorithm code for shutting down critical hardware or 
reporting. Such as:
*/
O156 = 5.0 ;  /* send 5.0 volts to output chan, then open relay */
         writecvt(S125, cvt_loc);  /* for reporting */
         interrupt();                /* force a VXI bus interrupt. */
}

2. In your application:
162 Creating and Running Algorithms  Chapter 5



you can also get S1xx states by using various Plug-and-Play functions or 
SCPI commands, such as 

alg:scal? ’algn’,’S125’

Timing Impact One of the tradeoffs for runtime scan verification is an impact on the overall 
scan rate. The total time spent in scan verification depends on the number of 
unique S1xx locations that are referenced in the algorithms. The total time 
in scan verification can be determined by the following formula:

Total Time in scan verification:

= 0 when no S1xx locations are referenced. 

 = 230µS + 40µS*(number of unique S1xx identifiers referenced in 
algorithms)

max time = 870 us, if all 16 S1xx locations are referenced

Thus, you have the flexibility of making tradeoffs between maximum scan 
rate and scan status checking.

The impact of using scan verification on the overall scan rate depends on 
both the number of channels in the analog input scan list and the number of 
channels in status list. In a system which uses the maximum number of 512 
analog input channels and the maximum 16 status channels, the total timing 
overhead will be 870/(512*40) = 4.24%. 

Also, if the status information is used to make decisions within the 
algorithm, additional time will also be required. The timing impact in an 
algorithm will depend on its complexity.

Defining and
Accessing Global

Variables

Global variables are those declared outside of both the main() function and 
any algorithms (see Figure 5-1). A global variable can be read or changed by 
any algorithm. To declare global variables you use the command:

ALG:DEF ’GLOBALS’,’<source_code>’

where <source_code> is Algorithm Language source limited to constructs 
for declaring variables. It must not contain executable statements. 
Examples:

declare single variable without assignment;
ALG:DEF ’GLOBALS’,’static float glob_scal_var;’

declare single variable with assignment;
ALG:DEF ’GLOBALS’,’static float glob_scal_var = 22.53;’

declare one scalar variable and one array variable;
ALG:DEF ’GLOBALS’,’static float glob_scal_var, glob_array_var[12];’

You access global variables within your algorithm like any other variable.

glob_scal_var = P_factor * I108
Creating and Running Algorithms  163Chapter 5



 NOTES 1. All variables must be declared static float.
2. Array variables cannot be assigned a value when declared.
3. All variables declared within your algorithm are local to that 

algorithm. If you locally declare a variable with the same identifier as 
an existing global variable, your algorithm will access the local 
variable only.

Determining
First Execution

(First_loop)

The HP E1422 always declares the global variable First_loop.  First_loop is 
set to 1 each time INIT is executed. After main() calls all enabled algorithms 
it sets First_loop to 0. By testing First_loop, your algorithm can determine 
if it is being called for the first time since an INITiate command was 
received. Example:

static float scalar_var;
static float array_var [ 4 ];

/* assign constants to variables on first pass only */
if ( First_loop )
{

scalar_var = 22.3;
array_var[0] = 0;
array_var[1] = 0;
array_var[2] = 1.2;
array_var[3] = 4;

}

Initializing Variables Variable initialization can be performed during three distinct HP E1422 
operations.

1.  When you define algorithms with the ALG:DEFINE command. A 
declaration initialization statement is a command to the driver’s 
translator function and doesn’t create an executable statement. The 
value assigned during algorithm definition is not re-assigned when 
the algorithm is run with the INIT command. Example statement:

static float my_variable = 22.95;/* tells translator to allocate space for this */
/* variable and initialize it to 22.95             */

2. Each time the algorithm executes. By placing an assignment 
statement within your algorithm. This will be executed each time the 
algorithm is executed. Example statment.

my_variable = 22.95;/* reset variable to 22.95 every pass         */

3. When the algorithm first executes after an INIT command. By using 
the global variable First_loop your algorithm can distinguish the first 
execution since an INIT command was sent. Example statement:

if( First_loop ) my_variable = 22.95  /* reset variable only when INIT starts alg */
164 Creating and Running Algorithms  Chapter 5



VT 

 the 

 of 
ain 

e of 

 up 
ous 
can 
o the 

t:
Sending Data to the
CVT and FIFO

The Current Value Table (CVT) and FIFO data buffer provide 
communication from your algorithm to your application program (running 
in your VXIbus controller). The three algorithm functions; writecvt(), 
writefifo(), and writeboth() provide the means to place data into the FIFO or 
CVT. These special functions may be called up to 512 times.

Writing a CVT element

The CVT provides 502 addressable elements where algorithm values can be 
stored (see Figure 6-4 on page 292). To send a value to a CVT element, you 
will execute the intrinsic Algorithm Language statement 
writecvt(<expression>,<cvt_element>), where <cvt_element> can take the 
value 10 through 511. The following is an example algorithm statement:

writecvt(O124, 330);  /* send output channel 24’s value to CVT element 330 */

Each time your algorithm writes a value to a CVT element the previous 
value in that element is overwritten.

 Important! There is a fixed relationship between channel number and CVT element for 
values from channels placed in the Scan List with ROUT:SEQ:DEF. When 
you are mixing Scan List data acquisition with algorithm data storage, be 
careful not to overwrite Scan List generated values with algorithm generated 
values. See “ROUTe:SEQuence:DEFine” on page 291. for controlling C
entries from the analog scan list.

Reading CVT elements

Your application program reads one or more CVT elements by executing
SCPI command [SENSe:]DATA:CVT? (@<element_list>), where 
<element_list> specifies one or more individual elements and/or a range
contiguous elements. The following example command will help to expl
the <element_list> syntax.

DATA:CVT? (@10,20,30:33,40:43,330) Return elements 10, 20, 30-33, 
40-43. and element 330.

Individual element numbers are isolated by commas. A contiguous rang
elements is specified by: <starting element>colon<ending element>.

Writing values to the FIFO

The FIFO, as the name implies is a First-In-First-Out buffer. It can buffer
to 65,024 values. This capability allows your algorithm to send a continu
stream of data values related in time by their position in the buffer. This 
be thought of as an electronic strip-chart recorder. Each value is sent t
FIFO by executing the Algorithm Language intrinsic statement  
writefifo(<expression>). The following in an example algorithm statemen

writefifo(O124);  /* send output channel 24’s value to the FIFO */
Creating and Running Algorithms  165Chapter 5



f 

ing 

f 

n 

sets 

, 

mple 

 
gh 

nt 

 

r 
late 

his 
nd 
Since you can determine the actual algorithm execution rate (see 
“Programming the Trigger Timer” on page 125), the time relationship o
readings in the FIFO is very deterministic.

Reading values from the FIFO

For a discussion on reading values from the FIFO, see “Reading Runn
Algorithm Values” on page 128.

Writing values to the FIFO and CVT

The  writeboth(<expression>,<cvt_element>) statement sends the value o
<expression> both to the FIFO and to a <cvt_element>. Reading these 
values is done the same way as mentioned for writefifo() and writecvt().

Setting a VXIbus
Interrupt

The algorithm language provides the function interrupt() to force a VXIbus 
interrupt. This interrupt() function can be used to set bit 11 of the 
STATus:OPERation register from within an algorithm. This bit could the
be enabled to generate an SRQ to the controller (see 
“STATus:OPERation:ENABle” on page 340 and “*SRE” on page 362). 
The following example algorithm code tests an input channel value and 
an interrupt if it is higher or lower than set limits.

static float upper_limit = 1.2, lower_limit = 0.2;
if( I124 > upper_limit || I124 < lower_limit ) interrupt();

Determining Your
Algorithm’s Identity

(ALG_NUM)

When you define your algorithm with the ALG:DEF 'ALGn',... command
the E1422's driver makes available to your algorithm the constant 
ALG_NUM.  ALG_NUM has the value n from "ALGn". For instance, if you 
defined an algorithm with <alg_name> equal to "ALG3", then ALG_NUM 
within that algorithm would have the value 3.

What can you do with this value? To give you an idea, here's a short exa
of the code that uses ALG_NUM:

writecvt ( inp_channel, (ALG_NUM * 10) + 0 );
writecvt ( Error, (ALG_NUM * 10) + 1 );
writecvt ( outp_channel, (ALG_NUM * 10) + 2 );
writecvt ( Status, (ALG_NUM * 10) + 3 );

This code writes algorithm values into CVT elements 10 through 13 for
ALG1, CVT elements 20 through 23 for ALG2, CVT elements 30 throu
33 for ALG3 etc.

Using ALG_NUM allows you to write identical code that can take differe
actions depending on the name it was given when defined.

Calling User
Defined Functions

Access to user defined functions is provided to avoid complex equation
calculation within your algorithm. Essentially what is provided with the 
HP E1422 is a method to pre-compute user function values outside of 
algorithm execution and place these values in tables, one for each use
function. Each function table element contains a slope and offset to calcu
an mx+b over the interval (x is the value you provide to the function). T
allows the DSP to linearly interpolate the table for a given input value a
166 Creating and Running Algorithms  Chapter 5



return the function’s value much faster than if a transcendental function’s 
equation were arithmetically evaluated using a power series expansion.

User functions are defined by downloading function table values with the 
ALG:FUNC:DEF command and can take any name that is a valid ’C’ 
identifier like ’haversine’, ’sqr’, ’log10’ etc. To find out how to generate table 
values from your function equation, see "Generating User Defined 
Functions" in Appendix E page 425. For details on the ALG:FUNC:DEF 
command, see page 221 in the Command Reference.

User defined functions are global in scope. A user function defined with 
ALG:FUNC:DEF is available to all defined algorithms. Up to 32 functions 
can be defined in the HP E1422. You call your function with the syntax 
<func_name>(<expression>). Example:

for user function pre-defined as square root with name ’sqrt’ 
O108 = sqrt( I100);  /* channel 8 outputs square root of input channel 0’s value */

 NOTE A user function must be defined (ALG:FUNC:DEF) before any algorithm is 
defined (ALG:DEF) that references it.

A VXIplug&play program that shows the use of  a user defined function is 
supplied on the examples disc in file "tri_sine.cpp". The program is on the 
CD supplied with your instrument. View the readme.txt file provided with 
the VXIplug&play driver for example program file location.

Operating Sequence
This section explains another important factor in your algorithm’s execution 
environment. Figure 5-2 shows the same overall sequence of operations that 
you saw in Chapter 3, but also includes a block diagram to show you which 
parts of the HP E1422 are involved in each phase of the control sequence.

Overall Sequence Here, the important things to note about this diagram are:

• All algorithm referenced input channel values are stored in the 
Channel Input Buffer (Input Phase) BEFORE algorithms are executed 
during the Calculate Phase.

• The execution of all defined algorithms (Calculate Phase) is complete 
BEFORE output values from algorithms, stored in the Channel Output 
Buffer, are used to update the output channel hardware during the 
Output Phase.

In other words, algorithms don’t actually read inputs at the time they 
reference input channels, and they don’t send values to outputs at the time 
they reference output channels. Algorithms read channel values from an 
Creating and Running Algorithms  167Chapter 5



 to 
input buffer, and write (and can read) output values to/from an output buffer. 
Here are example algorithm statements to describe operation:

inp_val = I108;/* inp_val is assigned a value from input buffer element 8   */
O116 = 22.3;/* output buffer element 16 assigned the value 22.3                */
O125 = O124;/* output buffer [24] is read and assigned to output buffer [25] */

A Common
Error to Avoid

Since the buffered input, algorithm execution, buffered output sequence is 
probably not a method many are familiar with, a programming mistake 
associated with it is easy to make. Once you see it here, you won’t do this in 
your programs. The following algorithm statements will help explain:

O124.B0 = 1;/* digital output bit on HP E1533 in SCP position 3 */
O124.B0 = 0;

Traditionally you expect the first of these two statements to set output 
channel 24, bit 0  to a digital 1, then after the time it takes to execute the 
second statement, the bit would return to a digital 0. Because both of these 
statements are executed BEFORE any values are sent to the output 
hardware, only the last statement has any effect. Even if these two 
statements were in separate algorithms, the last one executed would 
determine the output value. In this example the bit would never change. The 
same applies to analog outputs.

Algorithm
Execution Order

The buffered I/O sequence explained previously can be used to advantage. 
Multiple algorithms can access the very same buffered channel input value 
without having to pass the value in a parameter. Any algorithm can read and 
use as its input, the value that any other algorithm has sent to the output 
buffer. In order for these features to be of use you must know the order in 
which your algorithms will be executed. When you define your algorithms 
you give them one of 32 pre-defined algorithm names. These range from 
’ALG1’ to ALG32’. Your algorithms will execute in order of its name. For 
instance if you define ’ALG5’, then ’ALG2’, then ’ALG8’, and finally ’ALG1’, 
when you run them they will execute in the order ’ALG1’, ’ALG2’, ’ALG5’, 
and 'ALG8'. For more on input and output value sharing, see “Algorithm
Algorithm Communication” on page 175.
168 Creating and Running Algorithms  Chapter 5



Figure 5-2. Algorithm Operating Sequence Diagram
Creating and Running Algorithms  169Chapter 5



Defining Algorithms (ALG:DEF)
This section discusses how to use the ALG:DEFINE command to define 
algorithms. Later sections will discuss "what to define".

 Note for
VXIplug&play users

While the following discussion of algorithm definition is useful for 
plug&play users as regards the coding of the algorithm or global variable 
definition, the method of generating the algorithm code and actually 
down-loading it to the HP E1422 becomes much easier because of 
plug&play hpe1422.exe Soft Front Panel program, and 
hpe1422_downloadAlg(...) plug&play driver function.

Using the SFP "Algorithm Panel", you can create and test your algorithm, 
and then store it to a file. The hpe1422_downloadAlg(...) plug&play driver 
function was created specifically to download algorithms from files into 
your HP E1422A as part of your application program.

ALG:DEFINE in the
Programming

Sequence

*RST erases all previously defined algorithms. You must erase all 
algorithms before you begin to re-define them (except in the special case 
described in "Changing an Algorithm While it’s Running" later in this 
section).

ALG:DEFINE’s
Three Data Formats

The ALG:DEFINE ’<alg_name>’,’<source_code>’ command sends the 
algorithm’s source code to the HP E1422’s driver for translation to 
executable code. The <source_code> parameter can be sent in one of two 
forms:

1. SCPI Quoted String:  For short segments (single lines) of code, 
enclose the code string within single (apostrophes), or double quotes. 
Because of string length limitations within SCPI and some 
programming platforms, we recommend that the quoted string length 
not exceed a single program line. Example:

ALG:DEF ’ALG1’,’if(First_loop) O108=0; O108=O108+.01;’

2. SCPI Indefinite Length Block Program Data:  This form terminates 
the data transfer when it received an End Identifier with the last data 
byte. Use this form only when you are sure your controller platform 
will include the End Identifier. If it is not included, the ALG:DEF 
command will "swallow" whatever data follows the algorithm code. 
The syntax for this parameter type is:

#0<data byte(s)><null byte with End Identifier>
 Example from "Quoted String" above:
ALG:DEF  ’ALG1’,#0O108=I100;∅     (where "∅" is a null byte)
170 Creating and Running Algorithms  Chapter 5



 NOTE For Block Program Data, the Algorithm Parser requires that the source_code 
data end with a null (0) byte. You must append the null byte to the end of the 
block’s <data byte(s)>. If the null byte is not included within the block, the 
error "Algorithm Block must contain termination ’\0’" will be generated.

Indefinite Length Block Data Example

Retrieve algorithm source code from file and send to HP E1422 in indefinite 
length format using VTL/VISA instrument I/O libraries:

int byte_count, file_handle;
char source_buffer[8096], null = 0;
file_handle = open( "<filename>", O_RDONLY + O_BINARY);
byte_count = read( file_handle, source_buffer, sizeof( source_buffer ) );
close( file_handle );
source_buffer[ byte_count ] = 0; /* null to terminate source buffer string */
viPrintf( e1422,  "ALG:DEF ’ALG8’,#0%s%c\n", source_buffer, null );

See the section "Running the Algorithm" later in this chapter for more on 
loading algorithms from files.

Changing an
Algorithm While

it’s Running

The HP E1422 has a feature that allows you to specify that a given algorithm 
can be swapped with another even while it is executing. This is useful if, for 
instance, you needed to alter the function of an algorithm that is currently 
controlling a process and you don’t want to leave that process uncontrolled. 
In this case, when you define the original algorithm, you can enable it to be 
swapped.

Defining an Algorithm for
Swapping

The ALG:DEF command has an optional parameter that is used to enable 
algorithm swapping. The command’s general form is:

ALG:DEF ’<alg_name>’[,<swap_size>],’<source_code>’

Note the parameter <swap_size>. With <swap_size> you specify the amount 
of algorithm memory to allocate for algorithm <alg_name>. Make sure to 
allocate enough space for the largest algorithm you expect to define for 
<alg_name>. Here is an example of defining an algorithm for swapping:

define ALG3 so it can be swapped with an algorithm as large as 1000 words
ALG:DEF ’ALG3’,1000,#41698<1698char_alg_source>

 NOTE The number of characters (bytes) in an algorithm’s <source_code> 
parameter is not well related to the amount of memory space the algorithm 
requires. Remember this parameter contains the algorithm’s source code, not 
the executable code it will be translated into by the ALG:DEF command. 
Your algorithm’s source might contain extensive comments, none of which 
Creating and Running Algorithms  171Chapter 5



will be in the executable algorithm code after it is translated.

How Does it Work? We’ll use the example algorithm definition above for this discussion. When 
you specify a value for <swap_size> at algorithm definition, the HP E1422 
allocates two identical algorithm spaces for ALG3, each the size specified 
by <swap_size> (in this example 1000 words). This is called a "double 
buffer". We’ll just call these space A and space B. The algorithm is loaded 
into ALG3’s space A at first definition. Later, while algorithms are running 
you can "replace" ALG3 by again executing

ALG:DEF ALG3,#42435<2435char_alg_source>

Notice that <swap_size> is not (must not be) included this time. This 
ALG:DEF works like an Update Request. The HP E1422 translates and 
downloads the new algorithm into ALG3’s space B while the old ALG3 is 
still running from space A. When the new algorithm has been completely 
loaded into space B and an ALG:UPDATE command has been sent, the 
HP E1422 simply switches to executing ALG3’s new algorithm from space 
B at the next Update Phase (see Figure 5-2. If you were to send yet another 
ALG3, it would be loaded and executed from ALG3’s space A.

Determining an
Algorithm’s Size

In order to define an algorithm for swapping, you will need to know how 
much algorithm memory to allocate for it or any of its replacements. You 
can query this information from the HP E1422. Use the following sequence:

1. Define the algorithm without swapping enabled. This will cause the 
HP E1422 to allocate only the memory actually required by the 
algorithm.

2. Execute the ALG:SIZE? <alg_name> command to query the amount 
of memory allocated. You now know the minimum amount of 
memory required for the algorithm.

3. Repeat 1 and 2 for each of the algorithms you want to be able to swap 
with the original. From this you know the minimum amount of 
memory required for the largest.

4. Execute *RST to erase all algorithms.

5. Re-define one of the algorithms with swapping enabled and specify 
<swap_size> at least as large as the value from step 3 above (and 
probably somewhat larger because as alternate algorithms declare 
different variables, space is allocated for total of all variables 
declared).

6. Swap each of the alternate algorithms for the one defined in step 5, 
ending with the one you want to run now. Remember, you don’t send 
the <swap_size> parameter with these. If you don’t get an "Algorithm 
too big" error, then the value for <swap_size> in step 5 was large 
172 Creating and Running Algorithms  Chapter 5



enough.

7. Define any other algorithms in the normal manner.

 NOTES 1. Channels referenced by algorithms when they are defined, are only 
placed in the channel list before INIT. The channel list cannot be 
changed after INIT. If you re-define an algorithm (by swapping) after 
INIT, and it references channels not already in the channel list, it will 
not be able to access the newly referenced channels. No error 
message will be generated. To make sure all required channels will be 
included in the channel list, define <alg_name> and re-define all 
algorithms that will replace <alg_name> by swapping them before 
you send INIT. This insures that all channels referenced in these 
algorithms will be available after INIT.

2. The driver only calculates overall execution time for algorithms 
defined before INIT. This calculation is used to set the default output 
delay (same as executing ALG:OUTP:DELAY AUTO). If an 
algorithm is swapped after INIT that take longer to execute than the 
original, the output delay will behave as if set by ALG:OUTP:DEL  
0, rather than AUTO (see ALG:OUTP:DEL command). Use the same 
procedure from note 1 to make sure the longest algorithm execution 
time is used to set ALG:OUTP:DEL AUTO before INIT.

An example program file named "swap.cpp" on the drivers CD shows how 
to swap algorithms while the module is running. See Appendix F page 429 
for program listings. View the readme.txt file provided with the 
VXIplug&play driver for example program file location.
Creating and Running Algorithms  173Chapter 5



A Very Simple First Algorithm
This section will show you how to create and download an algorithm that 
simply sends the value of an input channel to a CVT element. It includes an 
example application program that configures the HP E1422, downloads 
(defines) the algorithm, starts and then communicates with the running 
algorithm. 

Writing the
Algorithm

The most convenient method of creating your algorithm is to use the 
hpe1422.exe soft front panel program. Use the Algorithms Panel to create, 
edit, and save the algorithm to a file called "mxplusb.c". The following 
algorithm source code is on the examples disc in a file called "mxplusb.c".

/* Example algorithm that calculates 4 Mx+B values upon
 * signal that sync == 1.  M and B terms set by application
 * program.
 */
 static float M, B, x, sync;
 if ( First_loop ) sync = 0;
 if ( sync == 1 ) {

writecvt(  M*x+B,   10 );
writecvt(-(M*x+B),  11 );
writecvt( (M*x+B)/2,12 );
writecvt( 2*(M*x+B),13 );
sync = 2;

 }

Running the
Algorithm

A C-SCPI example program "file_alg.cpp" shows how to retrieve the 
algorithm source file "mxplusb.c" and use it to define and execute an 
algorithm. When you have compiled "file_alg.cpp", type 
file_alg mxplusb.c to run the example and load the algorithm. View the 
readme.txt file provided with the VXIplug&play driver for example 
program file location.

Modifying an Example PID Algorithm
While the example PID algorithms supplied as source files with your 
HP E1422A can provide excellent general closed loop process control, there 
will be times when your process has specialized requirements that are not 
addressed by the as-written form of these PID algorithms. In this section we 
show you how to copy and modify an example PID algorithm.

PIDA with digital
On-Off Control

The example PID algorithms are written to supply control outputs through 
analog output SCPs. While it would not be an error to specify a digital 
channel as the PID control output, the PID algorithm as written would not 
operate the digital channel as you would desire.

The value you write to a digital output bit is evaluated as if it were a boolean 
value. That is, if the value represents a boolean true, the digital output is set 
to a binary 1. If the value represents a boolean false, the digital output is set 
to a binary 0. The HP E1422’s Algorithm Language (like ’C’) specifies that 
174 Creating and Running Algorithms  Chapter 5



a value of 0 is a boolean false (0), any other value is considered true (1). 
With that in mind we’ll analyze the operation of an example PIDA with a 
digital output as its control output.

How the Example PIDA
Operates

A PID algorithm is to control a bath temperature at 140 degrees Fahrenheit. 
With the Setpoint at 140 and the process variable (PV) reading 130, the 
value sent to the output is a positive value which drives the digital output to 
1 (heater on). When the process value reading reaches 140 the "error term" 
would equal zero so the value sent to the digital output would be 0 (heater 
off). Fine so far, but as the bath temperature coasts even minutely above the 
setpoint, a small negative value will be sent to the digital output which 
represents a boolean true value. At this point the output will again be 1 
(heater on) and the bath temperature will continue go up rather than down. 
This process is now out of control!

Modifying the
Example PIDA

This behavior is easy to fix. We’ll just modify the example PIDA algorithm 
source code (supplied with your HP E1422 in the file PIDA.C) and then 
define it as an algorithm. Use the following steps.

1. Load the source file for the example PIDA algorithm into your 
favorite text editor.

2. Find the line of code near the end of PIDA that reads:

outchan = Error * P_factor + I_out + D_factor * (Error - Error_old)

and insert this line below it:

if ( outchan <= 0 ) outchan = 0; /* all values not positive are now zero */

3. going back to the beginning of the file, change all occurrences of 
"inchan" to the input channel specifier of your choice (e.g. I100).

4. As in step 3, change all occurrences of "outchan" to the digital output 
channel/bit identifier of your choice (e.g. O108.B0).

5. Now save this algorithm source file as "ONOFFPID.C".

Algorithm to Algorithm Communication
The ability for one algorithm to have access to values from another can be 
very important particularly in more complex control situations. One of the 
important features of the HP E1422 is that this communication can take 
place entirely within the algorithms’ environment. Your application program 
is freed from having to retrieve values from one algorithm and then send 
those values to another algorithm.

Communication
Using Channel

Identifiers

The value of all defined input and output channels can be read by any 
algorithm. Here is an example of inter-algorithm channel communication.
Creating and Running Algorithms  175Chapter 5



Implementing
Multivariable Control

In this example, two PID algorithms each control part of a process and due 
to the process dynamics are interactive. This situation can call for what is 
known as a "decoupler". The job of the decoupler is to correct for the 
"coupling" between these two process controllers. Figure 5-3 shows the two 
PID controllers and how the de-coupler algorithm fits into the control loops. 
As mentioned before, algorithm output statements don’t write to the output 
SCP channels but are instead buffered in the Output Channel Buffer until the 
Output Phase occurs. This situation allows easy implementation of 
decouplers because it allows an algorithm following the two PIDs to inspect 
their output values and make adjustments to them before they are sent to 
output channels. The decoupler algorithm’s Decoupl_factor1 and 
Decouple_factor2 variables (assumes a simple interaction) are local and can 
be independently set using ALG:SCALAR:

/* decoupler algorithm. (must follow the coupled algorithms in execution sequence)  */
static float Decouple_factor1, Decouple_factor2;
O124 = O124 + Decouple_factor2 * O125;
O125 = O125 + Decouple_factor1 * O124;

Communication
Using Global

Variables

A more traditional method of inter-algorithm communication uses global 
variables. Global variables are defined using the ALG:DEF command in the 
form:
ALG:DEF ’GLOBALS’,’<variable_declaration_statements>’

Example of global declaration
ALG:DEF ’GLOBALS’,’static float cold_setpoint;’

Implementing Feed
Forward Control

In this example two algorithms mix hot and cold water supplies in a ratio that 
results in a tank being filled to a desired temperature. The temperature of the 
make-up supplies is assumed to be constant. Figure 5-4 shows the process 
diagram.

O124O124

PID Controller ALG1

PID Controller ALG2

+

+
Decoupl_factor2

Process Interaction

Decoupl_factor1

+

_

_

+

+

O125O125

Setpoint

Setpoint ALG3
De-coupler

Figure 5-3. Algorithm Communication with Channels

+

176 Creating and Running Algorithms  Chapter 5



To set up the algorithms for this example:

1. Define the global variable cold_setpoint

ALG:DEF ’GLOBALS’,’static float cold_setpoint;’

2. Define the following algorithm language code as ALG1, the ratio 
station algorithm.

static float hot_flow, cold_hot_ratio;
static float cold_temp = 55, hot_temp = 180, product_temp = 120;
hot_flow = I108; /* get flow rate of cold supply */
/* following line calculates cold to hot ratio from supply and product temps */
cold_hot_ratio = (hot_temp - product_temp) / (cold_temp - product_temp);
cold_setpoint = hot_flow * cold_hot_ratio;  /* output flow setpoint for ALG2 */

3. Modify a PIDA algorithm so its setpoint variable is the global 
variable cold_setpoint, its input channel is I109, and its output 
channel is O116, and Define as ALG2, the cold supply flow 
controller:

/*  Modified PIDA Algorithm; comments stripped out, setpoint from global,
    inchan = I109, outchan = O116
*/
     /* the setpoint is not declared so it will be global */

      static float P_factor = 1;
     static float I_factor = 0;

    static float D_factor = 0;
    static float I_out;
    static float Error;
    static float Error_old;

FT

flow transmitter

ALG2
Flow Controller

ALG1
Ratio Station

flow transmitter

FC

 55°
Cold Supply

GLOBAL
cold_setpoint

I108

O116
I109

180°
Hot Supply

120°
Product

Figure 5-4. Inter-algorithm Communication with Globals

FT

RS
Creating and Running Algorithms  177Chapter 5



    /* following line includes global setpoint var, and hard coded input chan */
    Error = Cold_setpoint - I109;
    if (First_loop)
    {

I_out = Error * I_factor;
    Error_old = Error;
    }
    else /* not First trigger */
    {

I_out = Error * I_factor + I_out;  /* output channel hard coded here */
    }
    O116 = Error * P_factor + I_out + D_factor * (Error - Error_old);
    Error_old = Error;

Non-Control Algorithms

Process Monitoring
Algorithm

Another function the HP E1422 performs well is monitoring input values 
and testing them against pre-set limits. If an input value exceeds its limit, the 
algorithm can be written to supply an indication of this condition by 
changing a CVT value, or even forcing a VXIbus interrupt. The following 
example shows acquiring one analog input value from channel 0, and one 
HP E1533 digital channel from channel 16, and limit testing them.

/* Limit test inputs , send values to CVT, and force interrupt when exceeded */ 
static float Exceeded;
static float Max_chan0, Min_chan0, Max_chan1, Min_chan1;
static float Max_chan2, Min_chan2, Max_chan3, Min_chan3;
static float Mask_chan16;
if ( First_loop ) Exceeded = 0;  /* initialize Exceeded on each INIT */
writecvt( I100, 330); /* write analog value to CVT */
Exceeded = ( ( I100 > Max_chan0 ) || ( I100 < Min_chan0 ) ); /* limit test analog */
writecvt( I101, 331); /* write analog value to CVT */
Exceeded = Exceeded + ( ( I101 > Max_chan1 ) || ( I101 < Min_chan1 ) );
writecvt( I102, 332); /* write analog value to CVT */
Exceeded = Exceeded + ( ( I102 > Max_chan2 ) || ( I102 < Min_chan2 ) );
writecvt( I103, 333); /* write analog value to CVT */
Exceeded = Exceeded + ( ( I103 > Max_chan3 ) || ( I103 < Min_chan3 ) );
writecvt( I116, 334); /* write 8-bit value to CVT */
Exceeded = Exceeded + ( I116 != Mask_chan16); /* limit test digital */
If ( Exceeded ) interrupt( );

Implementing Setpoint Profiles
A setpoint profile is a sequence of setpoints you wish to input to a control 
algorithm.  A normal setpoint is either static or modified by operator input 
to some desired value where it will then become static again.  A setpoint 
profile is used when you want to cycle a device under test through some 
operating range, and the setpoint remains for some period of time before 
changing. The automotive industry uses setpoint profiles to test their engines 
and drive trains.  That is, each new setpoint is a simulation of an operator 
sequence that might normally be encountered.

A setpoint profile can either be calculated for each interval or pre-calculated 
178 Creating and Running Algorithms  Chapter 5



and placed into an array.  If calculated, the algorithm is given a starting 
setpoint and an ending setpoint. A function based upon time then calculates 
each new desired setpoint until traversing the range to the end point.  Some 
might refer to this technique as setpoint ramping.

Most setpoint profiles are usually pre-calculated by the application program 
and downloaded into the instrument performing the sequencing. In that case, 
an array affords the best alternative for several reasons:

• Arrays can hold up to 1024 points. 
• Arrays can be downloaded quickly while the algorithm is running.
• Time intervals can be tied to trigger events and each N trigger events 

can simply access the next element in the array.
• Real-time calculations of setpoint profiles by the algorithm itself 

complicates the algorithm.
• The application program has better control over time spacing and the 

complexity and range of the data.  For example; succesive points in the 
array could be the same value just to keep the setpoint at that position 
for extra time periods.

The following is an example program that sequences data from an array to 
an Analog Output.  There are some unique features illustrated here that you 
can use:

• The application program can download new profiles while the 
application program is running.  The algorithm will continue to 
sequence through the array until it reaches the end of the array. At 
which time, it will set its index back to 0 and toggle a Digital Output 
bit to create an update channel condition on a Digital Input. Then at 
the next trigger event, the new array values will take effect before the 
algorithm executes.  As long as the new array is download into 
memory before the index reaches 1023, the switch to the new array 
elements will take place.  If the array is downloaded AFTER the index 
reaches 1023, the same setpoint profile will be executed until index 
reaches 1023 again.

• The application program can monitor the index value with 
ALG:SCAL? "alg1","index" so it can keep track of where the profile 
sequence is currently running.  The interval can also be made shorter 
or longer by changing the num_events variable. 

SOUR:FUNC:COND (@141) make Digital I/O channel 141 a 
digital output. The default 
condition for 140 is digital 
input.

define algorithm
ALG:DEF ’alg1’,’
static float setpoints[ 1024 ], index, num_events, n;
if ( First_loop ) {

index = 0; /* array start point */
n = num_events;/* preset interval */

}
n = n - 1; /* count trigger events */
if ( n <= 0 ) {

O100 = setpoints[ index ]; /* output new value */
Creating and Running Algorithms  179Chapter 5



index = index + 1;   /* increment index */
if ( index > 1023 ) {    /* look for endpoint */ 

index = 0;
O140.B0 = !O140.B0; /* toggle update bit */

}
n = num_events;   /* reset interval count */

}’

ALG:SCAL "alg1","num_events", 10 output change every 10msec
ALG:ARRAY "alg1","setpoints",<block_data> set first profile
ALG:UPD force change
TRIG:TIMER .001 trigger event at 1msec
TRIG:SOUR TIMER trigger source timer
INIT start algorithm

Download new setpoint profile and new timer interval:
ALG:SCAL "alg1","num_events", 20 output change every 20msec
ALG:ARRAY "alg1","setpoints",<block data> set first profile
ALG:UPD:CHAN "I140.B0" change takes place with change 

in bit 0 of O140. 

This example program was configured using Digital Output and Digital 
Inputs for the express reason that multiple E1422A’s may be used in a 
system.  In this case, the E1422A toggling the digital bit would be the master 
for the other E1422A’s in the system. They all would be monitoring one of 
their digital input channels to signal a change in setpoint profiles.
180 Creating and Running Algorithms  Chapter 5



Algorithm Language Reference
This section provides a summary of reserved keywords, operators, data 
types, constructs, intrinsic functions and statements.

Standard Reserved
Keywords

The list of reserved keywords is the same as ANSI ’C’. You may not create 
your own variables using these names. Note that the keywords that are 
shown underlined and bold are the only ANSI ’C’ keywords  that are 
implemented in the HP E1422.

 NOTE While all of the ANSI ’C’ keywords are reserved, only those keywords that 
are shown in bold are actually implemented in  the HP E1422.

Special HP E1422
Reserved Keywords

The HP E1422 implements some additional reserved keywords. You may 
not create variables using these names:

Identifiers Identifiers (variable names) are significant to 31 characters. They can 
include alpha, numeric, and the underscore character "_". Names must begin 
with an alpha character, or the underscore character. 

Alpha: a b c d e f g h i j k l m n o p q r s t u v w x y z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Numeric: 0 1 2 3 4 5 6 7 8 9 
Other: _

auto double int struc

break   else  long switch

case enum register typeof

char extern   return  union

const   float  short unsigned

continue for signed void

default goto sizeof volatile

do   if    static  while

abs interrupt writeboth

Bn (n=0 through 9) max writecvt

Bnn (nn=10 through 15) min writefifo
Creating and Running Algorithms  181Chapter 5



 NOTE Identifiers are case sensitive. The names My_array and my_array reference 
different variables.

Special Identifiers
for Channels

Channel identifiers appear as variable identifiers within the algorithm and 
have a fixed, reserved syntax. The identifiers I100 to I163 specify on-board 
input channel numbers. The identifiers I10000 to I15731 specify remote 
input channel numbers. The "I" must be upper case. They may only appear 
on the right side of an assignment operator. The identifiers O100 to O163 
specify output channel numbers. The "O" must be upper case. They can 
appear on either or both sides of the assignment operator.

Special Identifiers
for Remote Scan

Status

Remote Scan Status identifiers appear as variable identifiers within the 
algorithm and have a fixed, reserved syntax. The identifiers S100, S101, 
S108, S109, S116, S117, S124, S125, S132, S133, S140, S141, S148, S149, 
S156, and S157 specify scan status variables that are linked to the on-board 
channels of HP E1539A SCPs. These HP E1539A SCP channels are in turn 
connected to Remote Signal Conditioning Units (RSCUs). The identifiers 
are treated like input channel specifiers and may only appear on the right 
side of an assignment operator. The "S" must be upper case.

When accessed, these identifiers return one of three values: 0=normal RSCU 
operation, 1=RSCU cable disconnected after INIT, and 2=RSCU scan is out 
of synchronization (RSCU scan trigger problem during scan).

 NOTE Trying to declare a variable with a channel or status identifier will generate 
an error.

Operators The HP E1422’s Algorithm Language supports the following operators: 

Assignment Operator = (assignment) example; c = 1.2345

Arithmetic Operators + (addition) examples; c = a + b
- (subtraction) c = a - b
* (multiplication) c =  a * b
/ (division) c = a / b

Unary Operators - (unary minus) c = a + (-b)
+ (unary plus) c = a + (+b)

Comparison Operators == (is equal to) examples; a == b
!= (is not equal to) a != b
< (is less than) a < b
> (is greater than) a > b
182 Creating and Running Algorithms  Chapter 5



<= (is less than or equal to) a <= b
>= (is greater than or equal to) a >= b

Logical Operators || (or) examples; (a == b) || (a == c)
&& (and) (a == b) && (a == c)

Unary Logical Operator ! (not) example; !b

The result of a comparison operation is a boolean value. It is still a type float 
but its value is either 0 (zero) if false, or 1 (one) if true. You may test any 
variable with the if statement. A value of zero tests false, if any other value 
it tests true. For example:

/* if my_var is other than 0, increment count_var */ 
 if(my_var) count_var=count_var+1; 

Intrinsic Functions
and Statements

The following functions and statements are provided in the HP E1422’s 
Algorithm Language:

Functions:

abs(expression) return absolute value of expression
max(expression1,expression2) return largest of the two expressions
min(expression1,expression2) return smallest of the two expressions

Statements:

interrupt() sets bit 11 of STAT:OPER register
writeboth(expression,cvt_loc) write expression result to FIFO

and CVT element specified.
writecvt(expression,cvt_loc) write expression result to CVT

element specified.
writefifo(expression) write expression result to FIFO.

Note The sum of the number of calls to writefifo(), writecvt() and writeboth() 
must not exceed 512.

Program Flow
Control

Program flow control is limited to the conditional execution construct using 
if and else, and return. Looping inside an algorithm function is not 
supported. The only "loop" is provided by repeatedly triggering the 
HP E1422. Each trigger event (either external, or internal Trigger Timer) 
executes the main() function which calls each defined and enabled 
algorithm function. There is no goto statement.

Conditional Constructs The HP E1422 Algorithm Language provides the if-else construct in the 
following general form:

if (expression) statement1 else statement2
If  expression evaluates to non-zero statement1 is executed. If expression 
evaluates to zero, statement2 is executed. The else clause with its associated 
Creating and Running Algorithms  183Chapter 5



statement2 is optional. Statement1 and/or statement2 can be compound 
statement. That is { statement; statement; statement; ... }.

Exiting the Algorithm The return statement allows terminating algorithm execution before 
reaching the end by returning control to the main() function. The return 
statement can appear anywhere in your algorithm. You are not required to 
include a return statement to end an algorithm. The translator treats the end 
of your algorithm as an implied return.

Data Types The data type for variables is always static float. However decimal constant 
values without a decimal point or exponent character (".", "E", or "e"), as 
well as Hex and Octal constants are treated as 32-bit integer values. This 
treatment of constants is consistent with ANSI ’C’. To understand what this 
can mean you must understand that not all arithmetic statements in your 
algorithm are actually performed within the HP E1422’s DSP chip at 
algorithm run-time. Where expressions can be simplified, the HP E1422’s 
translator (a function of the driver invoked by ALG:DEF) performs the 
arithmetic operations before downloading the executable code to the 
algorithm memory in the HP E1422. For example look at the statement;

a = 5 + 8;

When the HP E1422’s translator receives this statement, it simplifies it by 
adding the two integer constants (5 and 8) and storing the sum of these as the 
float constant 13. At algorithm run-time, the float constant 13 is assigned to 
the variable "a". No surprises so far. Now analyze this statement;

a = ( 3 / 4 ) * 12;

Again the translator simplifies the expression by performing the integer 
divide for 3 / 4. This results in the integer value 0 being multiplied by 12 
which results in the float constant 0.0 being assigned to the variable "a" at 
run-time. This is obviously not what you wanted but is exactly what your 
algorithm instructed.

You can avoid these subtle problems by specifically including a decimal 
point in decimal constants where an integer operation is not what you want. 
For example, if you had made either of the constants in the division above a 
float constant by including a decimal point, the translator would have 
promoted the other constant to a float value and performed a float divide 
operation resulting in the expected 0.75 * 12, or the value 8.0 So the 
statement;

a = ( 3. / 4 ) * 12;

will result in the value float 8.0 being assigned to the variable "a".

The Static Modifier All HP E1422 variables, local or global, must be declared as static. An 
example:

static float gain_var, integer_var, deriv_var; /* three vars declared */

In ’C’, local variables that are not declared as static lose their values once the 
184 Creating and Running Algorithms  Chapter 5



function completes. The value of a local static variable remains unchanged 
between calls to your algorithm. Treating all variables this way allows your 
algorithm to "remember" its previous state. The static variable is local in 
scope, but otherwise behaves as a global variable. Also note that you may 
not declare variables within a compound statement.

Data Structures The HP E1422 Algorithm Language allows the following data structures:

• Simple variables of type float:
Declaration

static float simp_var, any_var;

Use
simp_var = 123.456;
any_var = -23.45;
Another_var = 1.23e-6;

Storage
Each simple variable requires four 16-bit words of memory.

• Single-dimensioned arrays of type float with a maximum of 1024 
elements:
Declaration

static float array_var [3];

Use
array_var [0] = 0.1;
array_var [1] = 1.2;
array_var [2] = 2.34;
array_var [3] = 5;

Storage
Arrays are "double buffered". This means that when you declare
an array, twice the space required for the array is allocated, plus
one more word as a buffer pointer. The memory required is:

words of memory = (8 * num_elements) + 1

This double buffered arrangement allows  the ALG:ARRAY
command to download all elements of the array into the "B" buffer
while your algorithm is accessing values from the "A" buffer. Then
an ALG:UPDATE command will cause the buffer pointer word to
point to the newly loaded buffer between algorithm executions.

Bitfield Access The HP E1422 implements bitfield syntax that allows you to manipulate 
individual bit values within a variable. This syntax is similar to what would 
be done in ’C’, but doesn’t require a structure declaration. Bitfield syntax is 
supported only for the lower 16 bits (bits 0-15) of simple (scalar) variables 
and channel identifiers.

Use
Creating and Running Algorithms  185Chapter 5



n 

 

ing 

.

, 
le; 
if(word_var.B0 || word_var.B3) /* if either bit 0 or bit 3 true ... */
word_var.B15 = 1; /* set bit 15                              */

 NOTES 1. You don’t have to declare a bitfield structure in order to use it. In the 
Algorithm Language the bitfield structure is assumed to be applicable 
to any simple variable including channel identifiers.

2. Unlike ’C’, the Algorithm Language allows you both bit access and 
"whole" access to the same variable. Example:

static float my_word_var;
my_word_var = 255 /* set bits 0 through 7 */
my_word_var.B3 = 0 /* clear bit 3 */

Declaration Initialization You may only initialize simple variables (not array members) in the 
declaration statement:

static float my_var = 2;

 NOTE! The initialization of the variable only occurs when the algorithm is first 
defined with the ALG:DEF command. The first time the algorithm is 
executed (module INITed and triggered), the value will be as initialized. But 
when the module is stopped (ABORT command), and then re-INITiated, the 
variable will not be re-initialized but will contain the value last assigned 
during program execution. In order to initialize variables each time the 
module is re-INITialized, see “Determining First Execution (First_loop)” o
page 164.

Global Variables To declare global variables you execute the SCPI command ALG:DEF
'GLOBALS',<program_string>. The <program_string> can contain simple 
variable and array variable declaration/initialization statements. The str
must not contain any executable source code.

Language Syntax Summary
This section documents the HP E1422's Algorithm Language elements

Identifier:

first character is A-Z, a-z, or "_", optionally followed by characters; A-Z
a-z, 0-9 or "_". Only the first 31 characters are significant. For examp
a, abc, a1, a12, a_12, now_is_the_time, gain1
186 Creating and Running Algorithms  Chapter 5



or 

 

Decimal Constant:

first character is 0-9 or "."(decimal point). Remaining characters if 
present are 0-9, a "."(one only), a single "E"or"e", optional "+" or "-", 
0-9. For example; 0.32, 2, 123, 123.456, 1.23456e-2, 12.34E3

 NOTE Decimal constants without a decimal point character are treated by the 
translator as 32-bit integer values. See “Data Types” on page 184.

Hexadecimal Constant:

first characters are 0x or 0X. Remaining characters are 0-9 and A-F 
a-f. No "." allowed.

Octal Constant:

first character is 0. Remaining characters are 0-7. If  ".", "e", or "E" is
found, the number is assumed to be a Decimal Constant as above.

Primary-expression:

constant
(expression)
scalar-identifier
scalar-identifier.bitnumber
array-identifier[expression]
abs(expression)
max(expression,expression)
min(expression,expression)

Bit-number:

Bn where n=0-9
Bnn where nn=10-15

Unary-expression:

primary-expression
unary-operator unary-expression

Unary-operator:

+
-
!

Creating and Running Algorithms  187Chapter 5



Multiplicative-expression:

unary-expression
multiplicative-expression multiplicative-operator unary-expression

Multiplicative-operator:

*
/

Additive-expression:

multiplicative-expression
additive-expression additive-operator multiplicative-expression

Additive-operator:

+
-

Relational-expression:

additive-expression
relational-expression relational-operator additive-expression

Relational-operator:

<
>
<=
>=

Equality-expression:

relational-expression
equality-expression equality-operator relational-expression

Equality-operator:

==
!=

Logical-AND-expression:

equality-expression
logical-AND-expression && equality-expression

Expression:

logical-AND-expression
expression || logical-AND-expression
188 Creating and Running Algorithms  Chapter 5



Declarator:

identifier
identifier [ integer-constant-expression ]
NOTE: integer-constant expression in array identifier above must not 
exceed 1023 

Init-declarator:

declarator
declarator = constant-expression
NOTES: 1. May not initialize array declarator.

2. Arrays limited to single dimension of 1024 maximum.

Init-declarator-list:

init-declarator
init-declarator-list , init-declarator

Declaration:

static float init-declarator-list;

Declarations:

declaration
declarations declaration

Intrinsic-statement:

interrupt ( )
writefifo ( expression )
writecvt ( expression , constant-expression )
writeboth( expression , constant-expression )
exit ( expression )

Expression-statement:

scalar-identifier = expression ;
scalar-identifier . bit-number = expression ;
array-identifier [ integer-constant expression ] = expression ;
intrinsic-statement ;

Selection-statement:

if ( expression ) statement
if ( expression ) statement else statement

Compound-statement:

{ statement-list }
Creating and Running Algorithms  189Chapter 5



{ }
NOTE: Variable declaration not allowed in compound statement

Statement:

expression-statement
compound-statement
selection-statement

Statement-list:

statement
statement-list statement

Algorithm-definition:

declarations statement-list
statement-list

Program Structure and Syntax
In this section you will learn the portion of the ’C’ programming language 
that is directly applicable to the HP E1422’ Algorithm Language. To do this 
we will compare the ’C’ Algorithm Language elements with equivalent 
BASIC language elements.

Declaring Variables In BASIC you usually use the DIM statement to name variables and allocate 
space in memory for them. In the Algorithm Language you specify the 
variable type and a list of variables:

BASIC ’C’
DIM a, var, array(3) static float a, var, array[ 3 ];

Here we declared three variables. Two simple variables; a, and var, and a 
single dimensioned array; array.

Comments:

• Note that the ’C’ language statement must be terminated with the 
semicolon ";".

• Although in the Algorithm Language all variables are of type float, 
you must explicitly declare them as such.

• All variables in your algorithm are static. This means that each time 
your algorithm is executed, the variables "remember" their values 
from the previous execution. The static modifier must appear in the 
declaration.

• Array variables must have a single dimension. The array dimension 
190 Creating and Running Algorithms  Chapter 5



specifies the number of elements. The lower bound is always zero (0) 
in the Algorithm Language. Therefore the variable My_array from 
above has three elements; My_array [0] through My_array[2].

Assigning Values BASIC and ’C’ are the same here. In both languages you use the symbol "=" 
to assign a value to a simple variable or an element of an array. The value 
can come from a constant, another variable, or an expression. Examples:

a = 12.345;
a = My_var;
a = My_array[ 2 ];
a = (My_array[ 1 ] + 6.2) / My_var;

 NOTE In BASIC the assignment symbol "=" is also used as the comparison 
operator "is equal to". For example; IF a=b THEN ... . As you will read a 
little further on, ’C’ uses a different symbol for this comparison.

The Operations
Symbols

Many of the operation symbols are the same, and are used the same way as 
those in BASIC. However there are differences, and they can cause 
programming errors until you get used to them.

The Arithmetic Operators The arithmetic operators available to the HP E1422 are the same as those 
equivalents in BASIC:
+ (addition) - (subtraction)
* (multiplication) / (division)

Unary Arithmetic
Operator

Again same as BASIC:
- (unary minus) Examples: a = b + (-c)
+ (unary plus) a = c + (+b)

The Comparison
Operators

Here there are some differences.
BASIC ’C’     Notes
  = (is equal to) == Different (hard to remember)
<> or # (is not equal to) != Different but obvious
 > (is greater than) > Same
 < (is less than) > Same
 >= (is greater than or equal to) >= Same
 <= (is less than or equal to) <= Same

A common ’C’ programming error for BASIC programmers is to 
inadvertently use the assignment operator "=" instead of the comparison 
operator "==" in an if statement. Fortunately, the HP E1422 will flag this as 
a Syntax Error when the algorithm is loaded.

The Logical Operators There are three operators. They are very different from those in BASIC.
BASIC Examples ’C’     Examples
AND IF A=B AND B=C &&   if( ( a == b )&&( b == c ) )
OR IF A=B OR A=C | | if( ( a == b ) | | ( a == c ) )
NOT IF NOT B ! if ( ! b )
Creating and Running Algorithms  191Chapter 5



Conditional
Execution

The HP E1422 Algorithm Language provides the if - else construct for 
conditional execution. The following figure compares the elements of the ’C’ 
if - else construct with the BASIC if - then - else - end if construct. The 
general form of the if - else construct is:

if(expression) statement1 else  statement2
where statement1 is executed if expression evaluates to non-zero (true), and 
statement2 is executed if expression evaluates to zero (false). Statement1 
and/or statement2 can be compound statements. That is, multiple simple 
statements within curly braces. See Figure 5-5
 

Note that in BASIC the boolean_expression is delimited by the IF and the 
THEN keywords. In ’C’ the parentheses delimit the expression. In ’C’ , the 
")" is the implied THEN. In BASIC the END IF keyword terminates a 
multi-line IF. In ’C’, the if is terminated at the end of the following statement 
when no else clause is present, or at the end of the statement following the 
else clause. Figure 5-6 shows examples of these forms:

Note that in ’C’ "else" is part of the closest previous "if"statement. So the 
example:
if( x ) if( y ) z = 1; else z = 2;

executes like: not like:
if( x ){ if( x ){

if( y ){ if ( y ){
z = 1; z = 1;

} }
else{ }

z = 2; else{
} z = 2;

} }

Simplest form (used often)

Two-line form (not recommended; use
multiple line form instead)

Multiple line form (used often)

Multiple line form with else (used often)

Comments

if(boolean_expression) statement;

if(boolean_expression)
statement;

if(boolean_expression){
statement;
statement;
statement;

}

if(boolean_expression)
{

statement;
statement;

}
else
{

statement;
}

’C’ Syntax

Figure 5-5. The if Statement ’C’ versus BASIC

IF boolean_expression THEN 
statement

IF boolean_expression THEN
statement

END IF

IF boolean_expression THEN
statement
statement
statement

END IF

IF boolean_expression THEN
statement
statement

ELSE
statement

END IF

BASIC Syntax
192 Creating and Running Algorithms  Chapter 5



Comment Lines Probably the most important element of programming is the comment. In 
older BASIC interpreters the comment line began with "REM" and ended at 
the end-of-line character(s) (probably carriage return then linefeed). Later 
BASICs allowed comments to also begin with various "shorthand" 
characters such as "!", or "’". In all cases a comment ended when the 
end-of-line is encountered. In ’C’ and the Algorithm Language, comments 
begin with the the two characters "/*" and continue until the two characters 
"*/" are encountered. Examples:

/* this line is solely a comment line */
if ( a != b) c = d + 1;  /* comment within a code line */
/* This comment is composed of more than one line.

The comment can be any number of lines long and
terminates when the following two characters appear

*/

About the only character combination that is not allowed within a comment 
is "*/", since this will terminate the comment.

if(a <= 0) c=abs(a);

if(a != 0)
c = b / a;

if((a != b) && (a != c))
{

a = a * b;
b = b + 1;
c = 0;

}

if((a == 5) || (b == -5))
{

c = abs(c);
c = 2 / c;

}
else
{

c = a * b;
}

IF A<=0 THEN C=ABS(A)

IF A<>0 THEN
C=B/A

END IF

IF A<>B AND A<>C THEN
A=A*B
B=B+1
C=0

END IF

IF A=5 OR B=-5 THEN
C=ABS(C)
C= 2/C

ELSE
C= A*B

END IF

ExamplesBASIC Syntax ’C’ Syntax

Figure 5-6. Examples of ’C’ and BASIC if Statements
Creating and Running Algorithms  193Chapter 5



Overall Program
Structure

The preceding discussion showed the differences between individual 
statements in BASIC and ’C’. Here we will show how the HP E1422’s 
Algorithm Language elements are arranged into a program.

Here is a simple example algorithm that shows most of the elements 
discussed so far.

/* Example Algorithm to show language elements in the context of a complete
custom algorithm.

Program variables:

user_flag Set this value with the SCPI command ALG:SCALAR.
user_value Set this value with the SCPI command ALG:SCALAR.

Program Function:

Algorithm returns user_flag in CVT element 330 and another value in CVT element 331
each time the algorithm is executed.
When user_flag = 0, returns zero in CVT 331.
When user_flag is positive, returns user_value * 2 in CVT 331
When user_flag is negative, returns user_value / 2 in CVT 331 and in FIFO

Use the SCPI command ALGorithm:SCALar followed by ALGorithm:UPDate to set
user_flag and user_value.

*/
static float user_flag; /* Declaration statements (end with  ; ) */
static float user_value;

writecvt (user_flag,330); /* Always write user_flag in CVT (statement ends with ; ) */

if (user_flag ) /* if statement (note no ; ) */
{ /* brace opens compound statement */

if (user_flag > 0) writecvt (user_value * 2,331); /* one-line if statement (writecvt ends with ; ) */
else /* else immediately follows complete if-statement construct */
{ /* open compound statement for else clause */

writecvt (user_value / 2,331); /* each simple statement ends in ; (even within compound ) */
writefifo (user_value); /* these two statements could combine with writeboth () */ 

} /* close compound statement for else clause */
} /* close compound statement for first if */
else writecvt (0,331);/* else clause goes with first if statement. Note single line else */
194 Creating and Running Algorithms  Chapter 5



10
11
12
16
17
17
18
218
219
220
220
221
   222
   223
Chapter 6

HP E1422 Command Reference

Using This Chapter
This chapter describes the Standard Commands for Programmable Instruments 
(SCPI) command set and the IEEE-488.2 Common Commands for the HP E1422.

• Overall Command Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     195
• Command Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     201

Common Command Format. . . . . . . . . . . . . . . . . . . . . . . . . . .     201
SCPI Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     201

Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     202
Numeric  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     202
Boolean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     203
Discrete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     203
Channel List (Standard Form)  . . . . . . . . . . . . . . . . . . . . .     203
Channel List (Relative Form). . . . . . . . . . . . . . . . . . . . . .     204
Arbitrary Block Program and Response Data  . . . . . . . . .     205

Linking Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     206
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     206

• SCPI Command Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     208
• IEEE-488.2 Common Command Reference  . . . . . . . . . . . . . . . .     357
• Command Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     367

 Overall Command Index

SCPI Commands
ABORt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     209
ALGorithm[:EXPLicit]:ARRay ’<alg_name>’,’<array_name>’,<array_block> . . . . . . . . .     2
ALGorithm[:EXPLicit]:ARRay? ’<alg_name>’,’<array_name>’  . . . . . . . . . . . . . . . . . . . .     2
ALGorithm[:EXPLicit]:DEFine ’<alg_name>’,[<swap_size>,] ’<source_code>’ . . . . . . . .     2
ALGorithm[:EXPLicit]:SCALar ’<alg_name>’,’<var_name>’,<value> . . . . . . . . . . . . . . .     2
ALGorithm[:EXPLicit]:SCALar? ’<alg_name>’,’<var_name>’  . . . . . . . . . . . . . . . . . . . . .     2
ALGorithm[:EXPLicit]:SCAN:RATio ’<alg_name>’,<num_trigs> . . . . . . . . . . . . . . . . . . .     2
ALGorithm[:EXPLicit]:SCAN:RATio? ’<alg_name>’  . . . . . . . . . . . . . . . . . . . . . . . . . . . .     2
ALGorithm[:EXPLicit]:SIZE? ’<alg_name>’  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     
ALGorithm[:EXPLicit][:STATe] ’<alg_name>’,<enable> . . . . . . . . . . . . . . . . . . . . . . . . . .     
ALGorithm[:EXPLicit][:STATe]? ’<alg_name>’  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     
ALGorithm[:EXPLicit]:TIME? ’<alg_name>’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     
ALGorithm:FUNCtion:DEFine ’<function_name>’,<range>,<offset>, <func_data> . . . . .     
ALGorithm:OUTPut:DELay <delay> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ALGorithm:OUTPut:DELay? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HP E1422 Command Reference  195Chapter 6



ALGorithm:UPDate[:IMMediate] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     224
ALGorithm:UPDate:CHANnel <dig_chan> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     225
ALGorithm:UPDate:WINDow <num_updates> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     226
ALGOrithm:UPDate:WINDow? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     227

ARM[:IMMediate] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     229
ARM:SOURce  <arm_source>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     229
ARM:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     230

CALibration:CONFigure:RESistance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     232
CALibration:CONFigure:VOLTage  <range>,<zero_fs>  . . . . . . . . . . . . . . . . . . . . . . . . . . .     233
CALibration:REMote? (@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     234
CALibration:REMote:DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     235
CALibration:REMote:DATA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     235
CALibration:REMote:STORe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     236
CALibration:SETup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     236
CALibration:SETup? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     237
CALibration:STORe  <type> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     237
CALibration:TARE  (@<ch_list>). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     238
CALibration:TARE:RESet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     241
CALibration:TARE?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     241
CALibration:VALue:RESistance  <ref_ohms> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     242
CALibration:VALue:VOLTage  <ref_volts> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     242
CALibration:ZERO?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     243

DIAGnostic:CALibration:SETup[:MODE] <mode> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     245
DIAGnostic:CALibration:SETup[:MODE]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     246
DIAGnostic:CALibration:TARE[:OTDetect]:MODE <mode> . . . . . . . . . . . . . . . . . . . . . .     246
DIAGnostic:CALibration:TARE[:OTDetect]:MODE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     247
DIAGnostic:CHECksum?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     247
DIAGnostic:CONNect <source>,<mode>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . .     248
DIAGnostic:CUSTom:MXB <slope>,<offset>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . .     249
DIAGnostic:CUSTom:PIECewise <table_range>,<table_block>, (@<ch_list>) . . . . . . . . .     250
DIAGnostic:CUSTom:REFerence:TEMPerature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     251
DIAGnostic:IEEE <mode> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     251
DIAGnostic:IEEE?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     252
DIAGnostic:INTerrupt[:LINe]  <intr_line> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     252
DIAGnostic:INTerrupt[:LINe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     252
DIAGnostic:OTDetect[:STATe]  <enable>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . .     252
DIAGnostic:OTDetect[:STATe]? (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     253
DIAGnostic:QUERy:SCPREAD? <reg_addr>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     254
DIAGnostic:REMote:USER:DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     254
DIAGnostic:REMote:USER:DATA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     255
DIAGnostic:TEST:REMote:NUMber? <test_num>,<iterations>,(@<channel>)  . . . . . . . .     255
DIAGnostic:TEST:REMote:SELFtest? (@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     256
DIAGnostic:VERSion?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     258

FETCh?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     259
196 HP E1422 Command Reference  Chapter 6



FORMat[:DATA]  <format>[,<size>]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     261
FORMat[:DATA]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     263

INITiate[:IMMediate]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     264

INPut:FILTer[:LPASs]:FREQuency  <cutoff_freq>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . .     265
INPut:FILTer[:LPASs]:FREQuency?  (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     266
INPut:FILTer[:LPASs][:STATe]  <enable>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . .     266
INPut:FILTer[LPASs][:STATe]?  (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     267
INPut:GAIN  <gain>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     268
INPut:GAIN?  (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     268
INPut:LOW <wvolt_type>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     269
INPut:LOW? (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     270
INPut:POLarity <mode>,<ch_list> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     270
INPut:POLarity? <channel>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     271

MEASure:VOLTage:EXCitation?  (@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     272
MEASure:VOLTage:UNSTrained?  (@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     274

MEMory:VME:ADDRess  <A24_address>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     276
MEMory:VME:ADDRess?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     277
MEMory:VME:SIZE  <mem_size>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     277
MEMory:VME:SIZE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     278
MEMory:VME:STATe  <enable>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     278
MEMory:VME:STATe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     279

OUTPut:CURRent:AMPLitude  <amplitude>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . .     280
OUTPut:CURRent:AMPLitude?  (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     281
OUTPut:CURRent[:STATe] <enable>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     282
OUTPut:CURRent[:STATe]?  (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     282
OUTPut:POLarity <select>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     283
OUTPut:POLarity? (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     283
OUTPut:SHUNt  <enable>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     284
OUTPut:SHUNt?  (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     284
OUTPut:SHUNt:SOURce  <select>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     285
OUTPut:SHUNt:SOURce?  (@<channel>). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     286
OUTPut:TTLTrg:SOURce <trig_source> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     286
OUTPut:TTLTrg:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     287
OUTPut:TTLTrg<n>:STATe  <ttltrg_cntrl>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     287
OUTPut:TTLTrg<n>[:STATe]?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     288
OUTPut:TYPE <select>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     288
OUTPut:TYPE? <channel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     289
OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . .     289
OUTPut:VOLTage:AMPLitude? (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     290

ROUTe:SEQuence:DEFine (@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     291
ROUTe:SEQuence:DEFine? <type> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     293
HP E1422 Command Reference  197Chapter 6



ROUTe:SEQuence:POINts? <type>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     294
SAMPle:TIMer  <interval> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     296
SAMPle:TIMer?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     296

[SENSe:]CHANnel:SETTling <num_samples>,<ch_list> . . . . . . . . . . . . . . . . . . . . . . . . . .     299
[SENSe:]CHANnel:SETTling? <channel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     300
[SENSe:]DATA:CVTable?  (@<element_list>). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     300
[SENSe:]DATA:CVTable:RESet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     301
[SENSe:]DATA:FIFO[:ALL]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     302
[SENSe:]DATA:FIFO:COUNt? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     303
[SENSe:]DATA:FIFO:COUNt:HALF? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     303
[SENSe:]DATA:FIFO:HALF? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     303
[SENSe:]DATA:FIFO:MODE  <mode>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     304
[SENSe:]DATA:FIFO:MODE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     305
[SENSe:]DATA:FIFO:PART?  <n_values> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     305
[SENSe:]DATA:FIFO:RESet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     306
[SENSe:]FREQuency:APERture <gate_time>,<ch_list> . . . . . . . . . . . . . . . . . . . . . . . . . . .     306
[SENSe:]FREQuency:APERture? <channel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     307
[SENSe:]FUNCtion:CONDition <ch_list> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     307
[SENSe:]FUNCtion:CUSTom [<range>,](@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .     308
[SENSe:]FUNCtion:CUSTom:REFerence [<range>,](@<ch_list>)  . . . . . . . . . . . . . . . . . .     309
[SENSe:]FUNCtion:CUSTom:TCouple  <type>,[<range>,](@<ch_list>) . . . . . . . . . . . . . .     310
[SENSe:]FUNCtion:FREQuency <ch_list>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     311
[SENSe:]FUNCtion:RESistance  <excite_current>,[<range>,](@<ch_list>) . . . . . . . . . . . .     312
[SENSe:]FUNCtion:STRain:FBENding [<range>,](@<ch_list>)  . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain:FBPoisson [<range>,](@<ch_list>)  . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain:FPOisson [<range>,](@<ch_list>)  . . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain:HBENding [<range>,](@<ch_list>) . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain:HPOisson [<range>,](@<ch_list>) . . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain[:QUARter] [<range>,](@<ch_list>) . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain:Q120 [<range>,](@<ch_list>). . . . . . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain:Q350 [<range>,](@<ch_list>). . . . . . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:STRain:USER [<range>,](@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . .     313
[SENSe:]FUNCtion:TEMPerature  <type>,<sub_type>,[<range>,](@<ch_list>)  . . . . . . . .     315
[SENSe:]FUNCtion:TOTalize <ch_list> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     317
[SENSe:]FUNCtion:VOLTage[:DC]  [<range>,](@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . .     317
[SENSe:]REFerence  <type>,<sub_type>,[<range>,](@<ch_list>)  . . . . . . . . . . . . . . . . . . .     318
[SENSe:]REFerence:CHANnels  (@<ref_channel>),(@<ch_list>) . . . . . . . . . . . . . . . . . . .     320
[SENSe:]REFerence:TEMPerature  <degrees_c> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     320
[SENSe:]STRain:BRIDge[:TYPE] <select>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . .     321
[SENSe:]STRain:BRIDge[:TYPE]? (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     322
[SENSe:]STRain:CONNect <select>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     322
[SENSe:]STRain:CONNect? (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     323
[SENSe:]STRain:EXCitation <excite_v>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . .     323
[SENSe:]STRain:EXCitation? (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     324
[SENSe:]STRain:EXCitation:STATe <enable>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . .     324
[SENSe:]STRain:EXCitation:STATe? (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     325
198 HP E1422 Command Reference  Chapter 6



[SENSe:]STRain:GFACtor <gage_factor>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . .     325
[SENSe:]STRain:GFACtor? (@<channel>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     326
[SENSe:]STRain:POISson <poisson_ratio>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . .     326
[SENSe:]STRain:POISson? (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     327
[SENSe:]STRain:UNSTrained <unstrained_v>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . .     327
[SENSe:]STRain:UNSTrained? (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     328
[SENSe:]TOTalize:RESet:MODE <select>,<ch_list>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     329
[SENSe:]TOTalize:RESet:MODE? <channel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     329

SOURce:FM[:STATe] <enable>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     330
SOURce:FM:STATe? (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     331
SOURce:FUNCtion[:SHAPe]:CONDition (@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . .     331
SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     332
SOURce:FUNCtion[:SHAPe]:SQUare (@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     332
SOURce:PULM[:STATe] <enable>,(@<ch_list>). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     332
SOURce:PULM[:STATe]? (@<channel>). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     333
SOURce:PULSe:PERiod <period>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     333
SOURce:PULSe:PERiod? (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     334
SOURce:PULSe:WIDTh <pulse_width>,(@<ch_list>)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .     334
SOURce:PULSe:WIDTh? (@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     335
SOURce:VOLTage[:AMPLitude] <-offset_v>,(@<ch_list>) . . . . . . . . . . . . . . . . . . . . . . . .     335

STATus:OPERation:CONDition?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     339
STATus:OPERation:ENABle  <enable_mask> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     340
STATus:OPERation:ENABle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     341
STATus:OPERation[:EVENt]?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     341
STATus:OPERation:NTRansition  <transition_mask>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     341
STATus:OPERation:NTRansition?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     342
STATus:OPERation:PTRansition  <transition_mask> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     342
STATus:OPERation:PTRansition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     343
STATus:PRESet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     344
STATus:QUEStionable:CONDition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     344
STATus:QUEStionable:ENABle  <enable_mask>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     345
STATus:QUEStionable:ENABle?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     346
STATus:QUEStionable[:EVENt]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     346
STATus:QUEStionable:NTRansition  <transition_mask> . . . . . . . . . . . . . . . . . . . . . . . . . . .     346
STATus:QUEStionable:NTRansition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     347
STATus:QUEStionable:PTRansition  <transition_mask>  . . . . . . . . . . . . . . . . . . . . . . . . . . .     347
STATus:QUEStionable:PTRansition?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     348

SYSTem:CTYPe?  (@<channel>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     349
SYSTem:ERRor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     349
SYSTem:VERSion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     350

TRIGger:COUNt  <trig_count> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     353
TRIGger:COUNt?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     353
TRIGger[:IMMediate] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     354
TRIGger:SOURce  <trig_source> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     354
HP E1422 Command Reference  199Chapter 6



TRIGger:SOURce?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     355
TRIGger:TIMer[:PERiod]  <trig_interval> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     355
TRIGger:TIMer[:PERiod]?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     356

Common Commands
*CAL?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     357
*CLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     358
*DMC  <name>,<cmd_data>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     358
*EMC <enable> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     358
*EMC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     358
*ESE  <mask> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     359
*ESE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     359
*ESR?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     359
*GMC? <name>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     359
*IDN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     359
*LMC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     360
*OPC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     360
*OPC?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     360
*PMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     361
*RMC <name>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     361
*RST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     361
*SRE  <mask> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     362
*SRE?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     362
*STB?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     362
*TRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     363
*TST? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     363
*WAI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     366
200 HP E1422 Command Reference  Chapter 6



Command Fundamentals
Commands are separated into two types: IEEE-488.2 Common Commands and SCPI 
Commands. The SCPI command set for the HP E1422 is 1990 compatible

Common
Command

Format

The IEEE-488.2 standard defines the Common commands that perform functions 
like reset, self-test, status byte query, etc. Common commands are four or five 
characters in length, always begin with the asterisk character (*), and may include 
one or more parameters. The command keyword is separated from the first parameter 
by a space character. Some examples of Common commands are:

*RST
*ESR 32
*STB?

SCPI
Command

Format

The SCPI commands perform functions like configuring channels, setting up the 
trigger system, and querying instrument states or retrieving data. A subsystem 
command structure is a hierarchical structure that usually consists of a top level (or 
root) command, one or more lower level commands, and their parameters. The 
following example shows part of a typical subsystem:

MEMory
:VME

:ADDRess  <A24_address>
:ADDRess?
:SIZE  <mem_size>
:SIZE?

MEMory is the root command, :VME is the second level command, and 
:ADDRess, and SIZE are third level commands.

Command
Separator

A colon (:) always separates one command from the next lower level command as 
shown below:

ROUTE:SEQUENCE:DEFINE?

Colons separate the root command from the second level command 
(ROUTE:SEQUENCE) and the second level from the third level 
(SEQUENCE:DEFINE?). If parameters are present, the first is separated from the 
command by a space character. Additional parameters are separated from each other 
by a commas.

Abbreviated
Commands

The command syntax shows most commands as a mixture of upper and lower case 
letters. The upper case letters indicate the abbreviated spelling for the command. For 
shorter program lines, send the abbreviated form. For better program readability,  
send the entire command. The instrument will accept either the abbreviated form or 
the entire command.

For example, if the command syntax shows SEQuence, then SEQ and 
SEQUENCE are both acceptable forms. Other forms of SEQuence, such as 
SEQUEN or SEQU will generate an error. You may use upper or lower case letters. 
Therefore, SEQUENCE, sequence, and SeQuEnCe are all acceptable. 
HP E1422 Command Reference  201Chapter 6



ugh 

f 

d

Implied
Commands

 Implied commands are those which appear in square brackets ([ ]) in the command 
syntax. (Note that the brackets are not part of the command, and are not sent to the 
instrument.) Suppose you send a second level command but do not send the preceding 
implied command. In this case, the instrument assumes you intend to use the implied 
command and it responds as if you had sent it. Examine the INITiate subsystem shown 
below:

INITiate
[:IMMediate]

The second level command :IMMediate is an implied command. To set the 
instrument’s trigger system to INIT:IMM, you can send either of the following 
command statements:

INIT:IMM     or     INIT

Variable
Command Syntax

Some commands will have what appears to be a variable syntax. As an example:  
OUTPut:TTLTrg<n>:STATe ON

In these commands, the "<n>" is replaced by a number. No space is left between the 
command and the number because the number is not a parameter. The number is part 
of the command syntax. The purpose of this notation is to save a great deal of space 
in the Command Reference. In the case of …TTLTrg<n>…, n can be from 0 thro
7. An example command statement:

OUTPUT:TTLTRG2:STATE  ON

Parameters Parameter Types. The following section contains explanations and examples o
parameter types you will see later in this chapter.

Parameter Types Explanations and Examples

Numeric Accepts all commonly used decimal representations of 
numbers including optional signs, decimal points, and 
scientific notation:
     123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01.
Special cases include MIN, MAX, and INFinity.

A parameter that represents units may also include a
units suffix. These are:

Volts;  V, mv=10-3, uv=10-6

Ohms;  ohm, kohm=103, mohm=106

Seconds;  s, msec=10-3, usec=10-6

Hertz;  hz, khz=103, mhz=106, ghz=109

The Comments section within the Command Reference
will state whether a numeric parameter can also be specifie
in hex, octal, and/or binary;
     #H7B, #Q173, #B1111011
202 HP E1422 Command Reference  Chapter 6



Boolean Represents a single binary condition that is either 
true or false:
     ON, OFF, 1, 0.

Discrete Selects from a finite number of values. These parameters 
use mnemonics to represent each valid setting.

An example is the TRIGger:SOURce  <source> command 
where <source> can be;
     BUS, EXT, HOLD, IMM, SCP,TIMer, or TTLTrg<n>.

Channel List
(Standard Form) The general form of a single channel specification is:

     cnn
where c represents the card number and nn represents the
channel number.

On-board Channels: Since the HP E1422A has an on-board 
64 channel multiplexer, the card number will always be 1 and 
the channel number can range from 00 to 63. Some example 
channel specifications:
channel 0=100, channel 5=105, channel 54=154

Remote Channels: The HP E1422A uses the HP E1539A SCP 
to support Remote Signal Conditioning Units like the 
HP E1529A. Through these SCPs, the HP E1422A can address 
up-to 512 remote channels. The HP E1539A SCP has 2 
measurement channels, that can each be externally multiplexed 
to 32 channels. The remote channel syntax is similar to the 
on-board syntax but with the addition of 2 more channel 
reference digits:
    cnnee
where c is the card number and again is always 1, nn references 
only the first or second channel at any SCP position in the 
HP E1422A. So, nn can be any of 00, 01, 08, 09, 16, 17, 24, 25, 
32, 33, 40, 41, 48, 49, 56, 57. The additional digits ee reference 
one of 32 channels (00 through 31) on the Remote Signal 
Conditioning unit connected to the on-board channel nn. An 
example of an RSC Unit is the HP E1529A Remote Strain 
Bridge Conditioning Unit.

Some example remote channel specifications:
10000 = RSC channel 00 connected to HP E1422A channel 00
10100 = RSC channel 00 connected to HP E1422A channel 01
10122 = RSC channel 22 connected to HP E1422A channel 01
12522 = RSC channel 22 connected to HP E1422A channel 25

Specifying a range of Channels: The General form of a 
channel range specification is:
     1nn[ee]:1nn[ee] (colon separator)
[ee] means optional remote channels. The second channel must 
HP E1422 Command Reference  203Chapter 6



 

 

o 

ation, 
ine 
be greater than the first.
Examples:
     On-board channels 0 through 15=100:115
     Remote channels 0000 through 0131=10000:10131
     
By using commas to separate them, individual and range 
specifications can be combined into a single channel list:
     0, 5, 8 through 3331, and 45=(@100,105,108:13331,145)
Notice that the range specified (108:13331) included a mix of 
on-board channels as well as remote channels. The HP E1422A 
will correctly address all channels in the range according to the 
type of SCP installed at the channel position (remote for 
HP E1539A SCPs and on-board for all other SCP models.

Note When a channel range includes both on-board and remote channel 
references, the command that specifies this range must be applicable to the 
function of the SCPs installed at those addresses, or a 3007 "Invalid signal 
conditioning plug-on"error will be generated.

Channel List
(Relative Form) The standard SCPI Relative Channel specification syntax is:

(@cc(nn,nn,nn:nn ... ))
where cc = card number, and nn = channel number. Notice that 
with this form the card number digit moves from in front of each 
channel number, to outside of the inner parentheses.
Example: 0, 5, 6 through 32, and 45 = (@1(0,5,6:32,45))

The Relative form has special meaning when used in the 
HP E1422’s ROUTe:SEQuence:DEFine (@<ch_list>) 
command. For the HP E1422A, the syntax changes to:
(@d(1nn,1nnee,1nn:1nn,1nn:1nnee,1nnee:1nnee,1nnee:1nn ...) 
Notice that cc (standard form card number) has changed tod
where d is now the "Data Destination" digit. The value of d 
controls the destination of the values read from the specified
channels in the following manner:

Getting back to the relative channel syntax above, notice als
that all channels start with "1".

Notes 1. Because the "card number" digit has been changed to mean Data Destin
the Relative Channel form is only allowed in the ROUTe:SEQuence:DEF
command. Usage in other commands will generate an error message.

2. Note that for both forms, a channel list is always contained within 

Data Destination Effect on Reading
1 Reading sent to Current Value Table (CVT)

2 Reading sent to FIFO Buffer

3 Reading sent to CVT and FIFO (the default)

0 Reading not recorded (neither CVT or FIFO)
204 HP E1422 Command Reference  Chapter 6



"(@" and ")". The Command Reference always shows the "(@" and ")" 
punctuation:      (@<ch_list>)

3. For the ROUT:SEQ:DEF command, the HP E1422A has to transfer remote 
channels lists to the RSC units they reference. This transfer will be much 
more efficient if channels for particular RSCs are grouped toghether in the 
list. (@10025,10031,10120,10820,10810,10903) is better than 
(@10810,10025,10903,10031,10820,10903)

Arbitrary Block 
Program and 
Response Data This parameter or data type is used to transfer a block of data in

the form of bytes. The block of data bytes is preceded by a 
preamble which indicates either 1) the number of data bytes 
which follow (definite length), or 2) that the following data 
block will be terminated upon receipt of a New Line message, 
and for HP-IB operation, with the EOI signal true (indefinite 
length).
The syntax for this parameter is:

Definite Length;     #<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the 
number of <digit(s)>. The value of <digit(s)> taken as a decimal 
integer indicates the number of <data byte(s)> in the block.

Example of sending or receiving 1024 data bytes:
     #41024<byte><byte1><byte2><byte3><byte4>…
     …<byte1021><byte1022><byte1023><byte1024>

OR

Indefinite Length;     #0<data byte(s)><NL^END>

Example of sending or receiving 4 data bytes:
     #0<byte><byte><byte><byte><NL^END>

Optional Parameters

 Parameters shown within square brackets ([ ]) are optional parameters. (Note that 
the brackets are not part of the command, and should not be sent to the instrument.) 
If you do not specify a value for an optional parameter, the instrument chooses a 
default value. For example, consider the 
FORMAT:DATA <type>[,<length>] command. If you send the command without 
specifying <length>, a default value for <length> will be selected depending on the 
<type> of format you specify. For example:

FORMAT:DATA  ASC  will set [,<length>] to the default for ASC of 7
FORMAT:DATA  REAL will set [,<length>] to the default for REAL of 32
FORMAT:DATA  REAL, 64 will set [,<length>] to 64
HP E1422 Command Reference  205Chapter 6



Be sure to place a space between the command and the first parameter.

Linking
Commands

Linking commands is used when you want to send more than one complete command 
in a single command statement.

Linking IEEE-488.2 Common Commands with SCPI Commands. Use a 
semicolon between the commands. For example:

*RST;OUTP:TTLT3  ON or  TRIG:SOUR  IMM;*TRG

Linking Multiple complete SCPI Commands. Use both a semicolon and a colon 
between the commands. For example:

OUTP:TTLT2  ON;:TRIG:SOUR  EXT

The semicolon as well as separating commands tells the SCPI parser to expect the 
command keyword following the semicolon to be at the same hierarchical level (and 
part of the same command branch) as the keyword preceding the semicolon. The 
colon immediately following the semicolon tells the SCPI parser to reset the expected 
hierarchical level to Root.

Linking a complete SCPI Command with other keywords from the same branch 
and level. Separate the first complete SCPI command from next partial command 
with the semicolon only. For example take the following portion of the [SENSE] 
subsystem command tree (the FUNCtion branch):

[SENSe:]
FUNCtion

:RESistance  <range>,(@<ch_list>)
:TEMPerature  <sensor>[,<range>,](@<ch_list>)
:VOLTage[:DC]  [<range>,](@<ch_list>)

Rather than send a complete SCPI command to set each function, you could send:

FUNC:RES  10000,(@100:107);TEMP  RTD, 92,(@108:115);VOLT  (@116,123)

This sets the first 8 channels to measure resistance, the next 8 channels to measure 
temperature, and the next 8 channels to measure voltage.

Note The command keywords following the semicolon must be from the same 
command branch and level as the complete command preceding the 
semicolon or a -113,"Undefined header" error will be generated.

Data  Types The following table shows the allowable type and sizes of parameter data sent to the 
module and query data returned by the module.  The parameter and returned value 
type is necessary for programming and is documented  in each command in this 
chapter
206 HP E1422 Command Reference  Chapter 6



.

Data Types Description

int16 Signed 16-bit integer number.

int32 Signed 32-bit integer number.

uint16 Unsigned 16-bit integer number.

uint32 Unsigned 32-bit integer number.

float32 32-bit floating point number.

float64 64-bit floating point number.

string String of characters (null terminated)
HP E1422 Command Reference  207Chapter 6



SCPI Command Reference
The following section describes the SCPI commands for the HP E1422. Commands 
are listed alphabetically by subsystem and also within each subsystem. A command 
guide is printed in the top margin of each page. The guide indicates the current 
subsystem on that page.
208 HP E1422 Command Reference  Chapter 6



ABORt
ABORt 

The ABORt subsystem is a part of the HP E1422’s trigger system. ABORt resets the 
trigger system from its Wait For Trigger state to its Trigger Idle state. 

Subsystem Syntax ABORt  

Caution ABORT stops execution of a running algorithm. The control 
output is left at the last value set by the algorithm. Depending 
on the process, this uncontrolled situation could even be 
dangerous. Make certain that you have put your process into a 
safe state before you halt execution of a controlling algorithm.

Comments • ABORt does not affect any other settings of the trigger system. When the 
INITiate command is sent, the trigger system will respond just as it did before 
the ABORt command was sent.

• Related Commands: INITiate[:IMMediate], TRIGger…

• *RST Condition: TRIG:SOUR HOLD

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage ABORT If INITed, goes to Trigger Idle state. If 
scanning and/or running algorithms, 
stops and goes to Trigger Idle State.
HP E1422 Command Reference  209Chapter 6



ALGorithm
ALGorithm

The ALGorithm command subsystem provides:

• Definition of user defined control algorithms

• Communication with algorithm array and scalar variables

• Controls to enable or disable individual loop algorithms

• Control of ratio of number of scan triggers per algorithm execution

• Control of loop algorithm execution speed

• Easy definition of algorithm data conversion functions

Subsystem Syntax ALGorithm
[:EXPLicit]

:ARRay ’<alg_name>’,’<array_name>’,<array_block>
:ARRay? ’<alg_name>’,’<array_name>’
:DEFine ’<alg_name>’[,<swap_size>],<program_block>
:SCALar ’<alg_name>’,’<var_name>’,<value>
:SCALar? ’<alg_name>’,’<var_name>’
:SCAN:RATio ’<alg_name>’,<value>
:SCAN:RATio? ’<alg_name>’
:SIZe? ’<alg_name>’
[:STATe] ’<alg_name>’,ON | OFF
[:STATe]? ’<alg_name>’
:TIME? ’<alg_name>’

:FUNCtion:DEFine ’<function_name>’,<range>,<offset>,<block_data>
:OUTPut:DELay <usec> | AUTO
:OUTPut:DELay?
:UPDate

[:IMMediate]
:CHANnel <channel_item>
:WINDow <num_updates>
:WINDow?

ALGorithm[:EXPLicit]:ARRay

ALGorithm[:EXPLicit]:ARRay ’< alg_name>’,’<array_name>’,<array_block>  
places values of <array_name> for algorithm <alg_name> into the Update Queue. 
This update is then pending until ALG:UPD is sent or an update event (as set by 
ALG:UPD:CHANNEL) occurs.

Note ALG:ARRAY places a variable update request in the Update Queue. You 
can not place more update requests in the Update Queue than are allowed 
210 HP E1422 Command Reference  Chapter 6



ALGorithm
by the current setting of ALG:UPD:WINDOW or a "Too many updates -- 
send ALG:UPDATE command’ error message will be generated.

Parameters

Comments • To send values to a Global array, set the <alg_name> parameter to "GLOBALS". 
To define a global array see the ALGorithm:DEFine command.

• An error is generated if <alg_name> or <array_name> is not defined.

• When an array is defined (in an algorithm or in ’GLOBALS’), the HP E1422 
allocates twice the memory required to store the array. When you send the 
ALG:ARRAY command, the new values for the array are loaded into the second 
space for this array. When you send the ALG:UPDATE, or 
ALG:UPDATE:CHANNEL commands, the HP E1422 switches a pointer to the 
space containing the new array values. This is how even large arrays can be 
"updated" as if they were a single update request. If the array is again updated, 
the new values are loaded into the original space and the pointer is again 
switched.

• When this command is sent textually to an HP E1406A command module, the 
Definit Length Arbitrary Block <array_block> parameter must always use 
"Big Endian" (Motorola) byte ordering for the packed 64-bit float values.

• <progname> is not case sensitive. However, <array_name> is case sensitive. 

• Related Commands: ALG:DEFINE, ALG:ARRAY?

• *RST Condition: No algorithms or variables are defined.

• Use VXIplug&play function: hpe1422_algArray(...)

Usage send array values to my_array in ALG4
ALG:ARR ’ALG4’,’my_array’,<block_array_data>

send array values to the global array glob_array
ALG:ARR ’GLOBALS’,’glob_array’,<block_array_data>
ALG:UPD force update of variables

ALGorithm[:EXPLicit]:ARRay?

ALGorithm[:EXPLicit]:ARRay? ’< alg_name>’,’<array_name>’ returns the 
contents of <array_name> from algorithm <alg_name>. ALG:ARR? can return 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 | GLOBALS none

array_name string valid ’C’ variable name none

array_block block data block of IEEE-754 64-bit floating point 
numbers

none
HP E1422 Command Reference  211Chapter 6



ALGorithm
contents of global arrays when <alg_name> specifies ’GLOBALS’.

Parameters

Comments • An error is generated if <alg_name> or <array_name> is not defined.

• When this command is sent to an HP E1406A command module, the Definite 
Length Abitrary Block response data will always use "Big Endian" (Motorola) 
byte ordering for the packed 64-bit float values.

• Returned Value: Definite length block data of IEEE-754 64-bit float

• Send with VXIplug&play Function: hpe1422_cmdReal64Arr_Q(...)

ALGorithm[:EXPLicit]:DEFine

ALGorithm[:EXPLicit]:DEFine ’< alg_name>’,[<swap_size>,] ’<source_code>’  
is used to define control algorithms, and global variables. 

Parameters

Comments • Use VXIplug&play function: hpe1422_downloadAlg(...). This function loads 
an algorithm from a file. The VXIplug&play Soft Front Panel program allows 
you to create and test algorithms on-line, then store them to files.

• The <alg_name> must be one of ALG1, ALG2, ALG3 etc. through ALG32 or 
GLOBALS. The parameter is not case sensitive. ’ALG1’ and ’alg1’ are 
equivalent as are ’GLOBALS’ and ’globals’.

• The <swap_size> parameter is optional. Include this parameter with the first 
definition of <alg_name> when you will want to change <alg_name>  later 
while it is running. The value can range up to about 23Kwords (ALG:DEF will 
then allocate 46K words as it creates two spaces for this algorithm).

-- If included, <swap_size> specifies the number of words of memory to 
allocate for the algorithm specified by <alg_name>. The HP E1422 will 
then allocate this much  memory again, as an update buffer for this 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 | GLOBALS none

array_name string valid ’C’ variable name none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 | GLOBALS none

swap_size numeric (uint16) 0 - Max Available Algorithm Memory words

source_code string or block data
see Comments

  PIDA... | PIDB... | algorithm source none
212 HP E1422 Command Reference  Chapter 6



ALGorithm
algorithm. Note that this doubles the amount of memory space requested. 
Think of this as "space1" and "space2" for algorithm <alg_name>. When 
you later send a replacement algorithm (must be sent without the 
<swap_size> parameter), it will be placed in "space2". You must send an 
ALG:UPDATE command for execution to switch from the original, to the 
replacement algorithm. If you again change the algorithm for <alg_name>, 
it will be executed from "space1" and so on. Note that <swap_size> must be 
large enough to contain the original executable code derived from 
<source_code> and any subsequent replacement for it or an error 3085 
"Algorithm too big" will be generated.

-- If <swap_size> is not included, the HP E1422 will allocated just enough 
memory for  algorithm <alg_name>. Since there is no swapping buffer 
allocated, this algorithm cannot be changed until a *RST command is sent to 
clear all algorithms. See "When Accepted and Usage".

• The <source_code> parameter contents can be:

-- When <alg_name> is ’ALG1’ through ’ALG32’:

a. ’PIDA(<inp_channel>,<outp_channel>)’, or
’PIDB(<inp_channel>,<outp_channel>,<alarm_channel>)’
<  _channel> parameters can specify actual input and output channels or 
they can specify global variables. This can be useful for inter-algorithm 
communication. Any global variable name used in this manner must have 
already been defined before this algorithm.

ALG:DEF ’ALG3’,’PIDB(I100,O124,O132.B2)’

b. Algorithm Language source code representing a custom algorithm.

ALG:DEF ’ALG5’,’if( First_loop ) O116=0; O116=O116+0.01;,

-- When <alg_name> is ’GLOBALS’, Algorithm Language variable 
declarations. A variable name must not be the same as an already define user 
function.

ALG:DEF ’GLOBALS’,’static float my_glob_scalar, my_glob_array[24];’

The Algorithm Language source code is translated by the HP E1422’s driver 
into an executable form and sent to the module. For ’PIDA’, and ’PIDB’ the 
driver sends the stored executable form of these PID algorithms.

• The <source_code> parameter can be one of three different SCPI types:

-- Quoted String:  For short segments (single lines) of code, enclose the code 
string within single (apostrophes), or double quotes. Because of string 
length limitations within SCPI and some programming platforms, we 
recommend that the quoted string length not exceed a single program line. 
Examples:
HP E1422 Command Reference  213Chapter 6



ALGorithm
ALG:DEF ’ALG1’,’O108=I100;’ or ALG:DEF ’ALG3’,’PIDA(I100,O124)’

Definite Length Block Program Data:  For longer code segments (like complete 
custom algorithms) this parameter works well because it specifies the exact length 
of the data block that will be transferred. The syntax for this parameter type is:

#<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the number of <digit(s)>. 
The value of <digit(s)> taken as a decimal integer indicates the number of <data 
byte(s)> in the block. Example from "Quoted String" above:

ALG:DEF  ’ALG1’,#211O108=I100;∅     (where "∅" is a null byte)

Note For Block Program Data, the Algorithm Parser requires that the 
source_code data end with a null (0) byte. You must append the null byte to 
the end of the block’s <data byte(s)>, and account for it in the byte count 
<digit(s)> from above. If the null byte is not included, or <digit(s)> doesn’t 
include it, the error "Algorithm Block must contain termination ’\0’" will be 
generated.

Indefinite Length Block Program Data:  This form terminates the data transfer 
when it received an End Identifier with the last data byte. Use this form only when 
you are sure your controller platform will include the End Identifier. If it is not 
included, the ALG:DEF command will "swallow" whatever data follows the 
algorithm code. The syntax for this parameter type is:

#0<data byte(s)><null byte with End Identifier>
 Example from "Quoted String" above:

ALG:DEF  ’ALG1’,#0O108=I100;∅     (where "∅" is a null byte)

Note For Block Program Data, the Algorithm Parser requires that the 
source_code data end with a null (0) byte. You must append the null byte to 
the end of the block’s <data byte(s)>. The null byte is sent with the End 
Identifier. If the null byte is not included, the error "Algorithm Block must 
contain termination ’\0’" will be generated.

When accepted
and Usage

4. If <alg_name> is not enabled to swap  (not originally defined with the 
<swap_size> parameter included) then both of the following conditions must 
be true:

a. Module is in Trigger Idle State (after *RST, or ABORT, and before INIT).

OK
*RST
ALG:DEF ’GLOBALS’,’static float My_global;’
ALG:DEF ’ALG2’,’PIDA(I100,O108)’
ALG:DEF ’ALG3’,’My_global = My_global + 1;’

Error
INIT
ALG:DEF ’ALG5’,’PIDB(I101,O109,O124.B0)’
214 HP E1422 Command Reference  Chapter 6



ALGorithm
"Can’t define new algorithm while running"

b. The <alg_name> has not already been defined since a *RST command. Here 
<alg_name> specifies either an algorithm name or ’GLOBALS’.

OK
*RST
ALG:DEF ’GLOBALS’,’static float My_global;’

Error
*RST
ALG:DEF ’GLOBALS’,’static float My_global;’
"No error"
ALG:DEF ’GLOBALS’,’static float A_different_global’
"Algorithm already defined" Because ’GLOBALS’ already defined

Error
*RST
ALG:DEF ’ALG3’,’PIDA(I100,O108)’
"No error"
ALG:DEF ’ALG3’,’PIDB(I100,O108,O124.B0)’
"Algorithm already defined" Because ’ALG3’ already defined

5. If <alg_name> has been enabled to swap (originally defined with the 
<swap_size> parameter included) then the <alg_name> can be re-defined (do 
not include <swap_size> now) either while the module is in the Trigger Idle 
State, or while in Waiting For Trigger State (INITed). Here <alg_name> is an 
algorithm name only, not ’GLOBALS’.

OK
*RST
ALG:DEF ’ALG3’,200,’if(O108<15.0) O108=O108 + 0.1; else O108 = -15.0;’
INIT starts algorithm
ALG:DEF ’ALG3’,’if(O108<12.0) O108=O108 + 0.2; else O108 = -12.0;’
ALG:UPDATE Required to cause new code to run
"No error"

Error
*RST
ALG:DEF ’ALG3’,200,’if(O108<15.0) O108=O108 + 0.1; else O108 = -15.0;’
INIT starts algorithm
ALG:DEF ’ALG3’,200,’if(O108<12.0) O108=O108 + 0.2; else O108 = -12.0;’
"Algorithm swapping already enabled; Can’t change size"
Because <swap_size> included at re-definition

Notes 1. Channels referenced by algorithms when they are defined, are only placed in 
the channel list before INIT. The list cannot be changed after INIT. If you 
re-define an algorithm (by swapping) after INIT, and it references channels 
not already in the channel list, it will not be able to access the newly 
referenced channels. No error message will be generated. To make sure all 
HP E1422 Command Reference  215Chapter 6



ALGorithm
required channels will be included in the channel list, define <alg_name> and 
re-define all algorithms that will replace <alg_name> by swapping them 
before you send INIT. This insures that all channels referenced in these 
algorithms will be available after INIT.

2. If you re-define an algorithm (by swapping) after INIT, and it declares an 
existing variable, the declaration-initialization statement 
(e.g. static float my_var = 3.5) will not change the current value of 
that variable.

3. The driver only calculates overall execution time for algorithms defined 
before INIT. This calculation is used to set the default output delay (same as 
executing ALG:OUTP:DELAY AUTO). If an algorithm is swapped after 
INIT that take longer to execute than the original, the output delay will behave 
as if set by ALG:OUTP:DEL 0, rather than AUTO (see ALG:OUTP:DEL 
command). Use the same procedure from note 1 to make sure the longest 
algorithm execution time is used to set ALG:OUTP:DEL AUTO before INIT.

ALGorithm[:EXPLicit]:SCALar

ALGorithm[:EXPLicit]:SCALar ’< alg_name>’,’<var_name>’,<value> sets the 
value of the scalar variable <var_name> for algorithm <alg_name> into the Update 
Queue. This update is then pending until ALG:UPD is sent or an update event (as set 
by ALG:UPD:CHANNEL) occurs.

Note ALG:SCALAR places a variable update request in the Update Queue. You 
can not place more update requests in the Update Queue than are allowed 
by the current setting of ALG:UPD:WINDOW or a "Too many updates -- 
send ALG:UPDATE command" error message will be generated.

Parameters

Comments • To send values to a global scalar variable, set the <alg_name> parameter to 
’GLOBALS’. To define a scalar global variable see the ALGorithm:DEFine 
command.

• An error is generated if <alg_name> or <var_name> is not defined.

• Related Commands: ALG:DEFINE, ALG:SCAL?, ALG:UPDATE

• *RST Condition: No algorithms or variables are defined.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 or GLOBALS none

var_name string valid ’C’ variable name none

value numeric (float32)  IEEE-754 32-bit floating point number none
216 HP E1422 Command Reference  Chapter 6



ALGorithm
• Use VXIplug&play function: hpe1422_algExpScal(...)

Usage ALG:SCAL ’ALG1’,’my_var’,1.2345 1.2345 to variable my_var in ALG1
ALG:SCAL ’ALG1’,’another’,5.4321 5.4321 to variable another also in ALG1
ALG:SCAL ’ALG3’,’my_global_var’,1.001 1.001 to global variable
ALG:UPD update variables from update queue

ALGorithm[:EXPLicit]:SCALar?

ALGorithm[:EXPLicit]:SCALar? ’< alg_name>’,’<var_name>’ returns the value of 
the scalar variable <var_name> in algorithm <alg_name>.

Parameters

Comments • An error is generated if <alg_name> or <var_name> is not defined.

• Returned Value: numeric value. The type is float32.

• Use VXIplug&play function: hpe1422_algExpScal_Q(...)

ALGorithm[:EXPLicit]:SCAN:RATio

ALGorithm[:EXPLicit]:SCAN:RATio ’< alg_name>’,<num_trigs> specifies the 
number of scan triggers that must occur for each execution of algorithm <alg_name>. 
This allows you to execute the specified algorithm less often than other algorithms. 
This can be useful for algorithm tuning.

Notes 1. The command ALG:SCAN:RATio <alg_name>,<num_trigs> does not take 
effect until an ALG:UPDATE, or ALG:UPD:CHAN command is received. 
This allows you to send multiple ALG:SCAN:RATIO commands and then 
synchronize their effect with ALG:UPDATE.

2. ALG:SCAN:RATio places a variable update request in the Update Queue. 
You can not place more update requests in the Update Queue than are allowed 
by the current setting of ALG:UPD:WINDOW or a "Too many updates -- 
send ALG:UPDATE command" error message will be generated.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 none

var_name string valid ’C’ variable name none
HP E1422 Command Reference  217Chapter 6



ALGorithm
Parameters

Comments Specifying a value of 1 (the default) causes the named algorithm to be executed each 
time a trigger is received.  Specifying a value of n will cause the algorithm to be 
executed once every n triggers. All enabled algorithms execute on the first trigger 
after INIT. 

• The algorithm specified by <alg_name> may or may not be currently defined. 
The specified setting will be used when the algorithm is defined.

• Related Commands: ALG:UPDATE, ALG:SCAN:RATIO?

• When Accepted: Both before and after INIT. Also accepted before and after 
the algorithm referenced is defined.

• *RST Condition: ALG:SCAN:RATIO  = 1 for all algorithms

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage ALG:SCAN:RATIO ’ALG4’,16 ALG4 executes once every 16 triggers.

ALGorithm[:EXPLicit]:SCAN:RATio?

ALGorithm[:EXPLicit]:SCAN:RATio? ’< alg_name>’ returns the number of 
triggers that must occur for each execution of <alg_name>.

Comments • Since ALG:SCAN:RATIO is valid for an undefined algorithm, 
ALG:SCAN:RATIO? will return the current ratio setting for <alg_name> even 
if it is not currently defined.

• Returned Value: numeric, 1 to 32,768. The type is int16.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

ALGorithm[:EXPLicit]:SIZE?

ALGorithm[:EXPLicit]:SIZE? ’< alg_name>’ returns the number of words of 
memory allocated for algorithm <alg_name>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 none

num_trigs numeric (int16) 1 to 32,767 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 none
218 HP E1422 Command Reference  Chapter 6



ALGorithm
Comments • Since the returned value is the memory allocated to the algorithm, it will only 
equal the actual size of  the algorithm if it was defined by ALG:DEF without its 
[<swap_size>] parameter. If enabled for swapping (if <swap_size> included at 
original definition), the returned value will be equal to (<swap_size>)*2.

Note If <alg_name> specifies an undefined algorithm, ALG:SIZE? returns 0. 
This can be used to determine whether algorithm <alg_name> is defined.

• Returned Value: numeric value up to the maximum available algorithm 
memory (this approximately 40K words). The type is int32.

• *RST Condition: returned value is 0.

• Send with VXIplug&play Function: hpe1422_cmdInt32_Q(...)

ALGorithm[:EXPLicit][:STATe]

ALGorithm[:EXPLicit][:STATe] ’< alg_name>’,<enable> specifies that algorithm 
<alg_name> , when defined, should be executed (ON), or not executed (OFF) during 
run-time.

Notes 1. The command ALG:STATE <alg_name>, ON | OFF does not take effect until 
an ALG:UPDATE, or ALG:UPD:CHAN command is received. This allows 
you to send multiple ALG:STATE commands and then synchronize their 
effect.

2. ALG:STATE places a variable update request in the Update Queue. You can 
not place more update requests in the Update Queue than are allowed by the 
current setting of ALG:UPD:WINDOW or a "Too many updates -- send 
ALG:UPDATE command" error message will be generated.

Caution When ALG:STATE OFF disables an algorithm, its control output 
is left at the last value set by the algorithm. Depending on the 
process, this uncontrolled situation could even be dangerous. 
Make certain that you have put your process into a safe state 
before you halt execution of a controlling algorithm.

The HP E1535 Watchdog Timer SCP was specifically developed 
to automatically signal that an algorithm has stopped 
controlling a process. Use of the Watchdog Timer is 
recommended for critical processes.
HP E1422 Command Reference  219Chapter 6



ALGorithm
Parameters

Comments • The algorithm specified by <alg_name> may or may not be currently defined. 
The setting specified will be used when the algorithm is defined.

• *RST Condition: ALG:STATE ON

• When Accepted: Both before and after INIT. Also accepted before and after 
the algorithm referenced is defined.

• Related Commands: ALG:UPDATE, ALG:STATE?, ALG:DEFINE

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage ALG:STATE ’ALG2’,OFF disable ALG2

ALGorithm[:EXPLicit][:STATe]?

ALGorithm[:EXPLicit][:STATe]? ’< alg_name>’ returns the state (enabled or 
disabled) of  algorithm <alg_name>.

Parameters

Comments • Since ALG:STATE is valid for an undefined algorithm, ALG:STATE? will 
return the current state for <alg_name> even if it is not currently defined.

• Returned Value: Numeric, 0 or 1. Type is uint16.

• *RST Condition: ALG:STATE 1

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

ALGorithm[:EXPLicit]:TIME?

ALGorithm[:EXPLicit]:TIME? ’< alg_name>’ computes and returns a worst-case 
execution time estimate in seconds.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 none

enable boolean (uint16) 0 | 1 | ON | OFF none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 none
220 HP E1422 Command Reference  Chapter 6



ALGorithm
Parameters

Comments • When  <alg_name> is ALG1 through ALG32, ALG:TIME? returns only the 
time required to execute the algorithm’s code.

• When <alg_name> is ’MAIN’, ALG:TIME? returns the worst-case execution 
time for an entire measurement & control cycle (sum of MAIN, all enabled 
algorithms, analog and digital inputs, and control outputs).

• If triggered more rapidly than the value returned by ALG:TIME? ’MAIN’, the 
HP E1422 will generate a "Trigger too fast" error.

Note If <alg_name> specifies an undefined algorithm, ALG:TIME? returns 0. This can be 
used to determine whether algorithm <alg_name> is defined.

This command forces algorithms to run internally. If an algorithm contains a run-time 
error, no data can be returned and the command will not complete (will "hang").

• When Accepted: Before INIT only.

• Returned Value: numeric value. The type is float32

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

ALGorithm:FUNCtion:DEFine 

ALGorithm:FUNCtion:DEFine ’< function_name>’,<range>,<offset>, 
<func_data> defines a custom function that can be called from within a custom 
algorithm. See “Generating User Defined Functions” on page 425 for full 
information.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

alg_name string ALG1 - ALG32 or MAIN none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

function_name string valid ’C’ identifier
(if not already defined in ’GLOBALS’)

none

range numeric (float32) see comments none

offset numeric (float32) see comments none

func_data  512 element array of 
uint16

see comments none
HP E1422 Command Reference  221Chapter 6



ALGorithm
Comments • By providing this custom function capability, the HP E1422’s algorithm 
language can be kept simple in terms of mathematical capability. This increases 
speed. Rather than having to calculate high-order polynomial approximations 
of non-linear functions, this custom function scheme loads a pre-computed 
look-up table of values into memory. This method allows computing virtually 
any transcendental or non-linear function in only 17µseconds. Resolution is 16 
bits.

• <function_name> is a global identifier and cannot be the same as a previously 
define global variable. A user function is globally available to all defined 
algorithms.

• You generate values for <range>, <offset>, and <func_data> with a program 
supplied with your HP E1422. It is provided in C-SCPI, and HP Basic forms. 
For full information see Appendix E "Generating User Defined Functions" on 
page 425

• <range>, and <offset> define the allowable input values to the function 
(domain). If values input to the function are equal to or outside of 
(±<range>+<offset>), the function may return ±INF in IEEE-754 format. For 
example; <range> = 8 (-8 to 8), <offset> = 12. The allowable input values must 
be greater than 4 and less than 20. 

• <func_data> is a 512 element array of type uint16.

• The algorithm syntax for calling is: <function_name> ( <expression> ). for 
example:

O116 = squareroot( 2 * Input_val );

• Functions must be defined before defining algorithms that reference them.

• When Accepted: Before INIT only.

Usage ALG:FUNC:DEF ’F1’,8,12,<block_data> send range, offset and table values for 
function F1

• Use VXIplug&play function: hpe1422_sendBlockUInt16(...)

ALGorithm:OUTPut:DELay

ALGorithm:OUTPut:DELay <delay> sets the delay from Scan Trigger to start of 
output phase.

Parameters

Comments • The algorithm output statements (e.g. O115 = Out_val) DO NOT program 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

delay numeric (float32) 0 - .081 | AUTO (2.5µs resolution) seconds
222 HP E1422 Command Reference  Chapter 6



ALGorithm
outputs when they are executed. Instead, these statements write to an 
intermediate Output Channel Buffer which is read and used for output AFTER 
all algorithms have executed AND the algorithm output delay has expired (see 
Figure 6-1).  Also note that not all outputs will occur at the same time but will 
take approximately 10usec per channel to write.

• When <delay> is 0, the Output phase begins immediately after the Calculate 
phase. This provides the fastest possible execution speed while potentially 
introducing variations in the time between trigger and beginning of the Output 
phase. The variation can be caused by conditional execution constructs in 
algorithms, or other execution time variations. 

• If you set <delay> to less time than is required for the Input + Update + Calculate 
ALG:OUTP:DELAY? will report the time you set, but the effect will revert to 
the same that is set by ALG:OUTP:DELAY 0 (Output begins immediately after 
Calculate).

• When <delay> is AUTO, the delay is set to the worst-case time required to 
execute phases 1 through 3. This provides the fastest execution speed while 
maintaining a fixed time between trigger and the OUTPUT phase. 

• When you want to set the time from trigger to the beginning of OUTPUT, use 
the following procedure. After defining all of your algorithms, execute:

ALG:OUTP:DEL AUTO sets minimum stable delay
ALG:OUTP:DEL? returns this minimum delay
ALG:OUTP:DEL <minimum+additional> additional = desired - minimum

Note that the delay value returned by ALG:OUTP:DEL? is valid only until 
another algorithm is loaded. After that, you would have to re-issue the 
ALG:OUTP:DEL AUTO and ALG:OUTP:DEL? commands to determine the 
new delay that includes the added algorithm.

• When Accepted: Before INIT only.

• *RST Condition: ALG:OUTP:DELAY AUTO  

• Send with VXIplug&play Function: hpe1422_cmd(...)

ALGorithm:OUTPut:DELay?

ALGorithm:OUTPut:DELay? returns the delay setting from ALG:OUTP:DEL. 

Comments • The value returned will be either the value set by ALG:OUTP:DEL <delay>, or 
the value determined by ALG:OUTP:DEL AUTO. 

• When Accepted: Before INIT only.

• *RST Condition: ALG:OUTP:DEL AUTO, returns delay setting determined 
by AUTO mode.
HP E1422 Command Reference  223Chapter 6



ALGorithm
• Returned Value: number of seconds of delay. The type is float32.

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

ALGorithm:UPDate[:IMMediate]

ALGorithm:UPDate[:IMMediate] requests an immediate update of any scalar, array, 
algorithm code, ALG:STATE, or ALG:SCAN:RATIO changes that are pending.

Comments • Variables and algorithms can be accepted during Phase 1-INPUT or 
Phase 2-UPDATE in Figure 6-1 when INIT is active. All writes to variables and 
algorithms occur to their buffered elements upon receipt. However, these 
changes do not take effect until the ALG:UPD:IMM command is processed at 
the beginning of the UPDATE phase.  The update command can be received at 
any time prior to the UPDATE phase and will be the last command accepted.  
Note that the ALG:UPD:WINDow command specifies the maximum number 
of updates to do. If no update command is pending when entering the UPDATE 
phase, then this time is dedicated to receiving more changes from the system.

• As soon as the ALG:UPD:IMM command is received, no further changes are 
accepted until all updates are complete. A query of an algorithm value following 
an UPDate command will not be executed until the UPDate completes; this may 
be a useful synchronizing method.

• When Accepted: Before or after INIT. 

• Related Commands: ALG:UPDATE:WINDOW, ALG:SCALAR, 
ALG:ARRAY, ALG:STATE, and ALG:SCAN:RATIO, ALG:DEF (with 
swapping enabled)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Command
Sequence

The following example shows three scalars being written with the associated update 
command following. See ALG:UPD:WINDOW.

ALG:SCAL ALG1’,’Setpoint’,25 provide 3 new alg scalar values
ALG:SCAL ’ALG1’,’P_factor’,1.3
ALG:SCAL ’ALG2’,’P_factor’,1.7

4
OUTPUT

output table
sent to SCP

channels

4
OUTPUT

output table
sent to SCP

channels

1
INPUT

from SCP
channels,
analog &

digital

1
INPUT

from SCP
channels,
analog &

digital

2
UPDATE

variables &
algorothms

Set by ALG:OUTPUT:DELay (if any)

Trigger Event Trigger Event

3
EXECUTE ALGS

execute all enabled algorithms

Figure 6-1. Updating Variables and Algorithms
224 HP E1422 Command Reference  Chapter 6



ALGorithm
ALG:UPD update values in alg
ALG:SCAL? ’ALG2’,’Setpoint’ query for new updated scalar

ALGorithm:UPDate:CHANnel

ALGorithm:UPDate:CHANnel <dig_chan> This command is used to update 
variables, algorithms, ALG:SCAN:RATIO, and ALG:STATE changes when the 
specified digital input level changes state. When the ALG:UPD:CHAN command is 
executed, the current state of the digital input specified is saved. The update will be 
performed at the next update phase (UPDATE in Figure 6-1), following the channel’s 
change of digital state. This command is useful to synchronize multiple HP E1422s 
when you want all variable updates to be processed at the same time.

Parameters

Comments • The duration of the level change to the designated bit or channel MUST be at 
least the length of time between scan triggers. Variable and algorithm changes 
can be accepted during the INPUT or UPDATE phases (Figure 6-1) when INIT 
is active. All writes to variables and algorithms occur to their buffered elements 
upon receipt.  However, these changes do not take effect until the 
ALG:UPD:CHAN command is processed at the beginning of the UPDATE 
phase. Note that the ALG:UPD:WINDow command specifies the maximum 
number of updates to do. If no update command is pending when entering the 
UPDATE phase, then this time is dedicated to receiving more changes from the 
system.

Note As soon as the ALG:UPD:CHAN command is received, the HP E1422 
begins to closely monitor the state of the update channel and can not 
execute other commands until the update channel changes state to complete 
the update

• Note that an update command issued after the start of the UPDATE phase will 
be buffered but not executed until the beginning of the next INPUT phase. At 
that time, the current stored state of the specified digital channel is saved and 
used as the basis for comparison for state change. If at the beginning of the scan 
trigger the digital input state had changed, then at the beginning of the UPDATE 
phase the update command would detect a change from the previous scan trigger 
and the update process would begin.

• When Accepted: Before and After INIT.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

dig_chan Algorithm 
Language channel 
specifier (string)

Input channel for HP E1533: Iccc.Bb
for HP E1534: Iccc

where ccc=normal channel number and
b=bit number (include ".B")

none
HP E1422 Command Reference  225Chapter 6



ALGorithm
Command
Sequence

The following example shows three scalars being written with the associated update 
command following. When the ALG:UPD:CHAN command is received, it will read 
the current state of channel 108, bit 0. At the beginning of the UPDATE phase, a 
check will be made to determine if the stored state of channel 108 bit 0, is different 
from the current state. If so, the update of all three scalars take effect next Phase 2.

INIT
ALG:SCAL ’ALG1’,’Setpoint’,25
ALG:SCAL ’ALG1’,’P_factor’,1.3
ALG:SCAL ’ALG2’,’P_factor’,1.7
ALG:UPD:CHAN ’I108.B0’ update on state change at bit zero of 8-bit 

channel 8

ALGorithm:UPDate:WINDow

ALGorithm:UPDate:WINDow <num_updates>  specifies how many updates you 
may need to perform during phase 2 (UPDATE). The DSP will process this command 
and assign a constant window of time for UPDATE.

Parameters

Comments • The default value for num_updates is 20. If you know you will need fewer 
updates, specifying a smaller number will result in slightly greater loop 
execution speeds.

• This command creates a time interval in which to perform all pending algorithm 
and variable updates. To keep the loop times predictable and stable, the time 
interval for UPDATE is constant. That is, it exists for all active algorithms, each 
time they are executed whether or not an update is pending.

• *RST Condition: ALG:UPD:WIND 20

• When Accepted: Before INIT only.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage You decide you will need to update a maximum of 8 variables during run-time.

ALG:UPD:WIND 8

Notes 1. When the number of update requests exceeds the Update Queue size set with 
ALG:UPD:WINDOW by one, the module will refuse the request and will 
issue the error message "Too many updates in queue. Must send UPDATE 
command". Send ALG:UPDATE, then re-send the update request that caused 
the error.

2. The "Too many updates in queue..." error can occur before the module is 
INITialized. It’s not uncommon with several algorithms defined, to have more 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

num_updates numeric (int16) 1 - 512 none
226 HP E1422 Command Reference  Chapter 6



ALGorithm
variables that need to be pre-set before INIT than you will change in one 
update after the algorithms are running. You may send INIT with updates 
pending. The INIT command automatically performs the updates before 
starting the algorithms.

ALGOrithm:UPDate:WINDow?

ALGOrithm:UPDate:WINDow? returns the number of variable, and algorithm 
updates allowed within the UPDATE window.

• Returned Value: number of updates in the UPDATEwindow. The type is int16

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)
HP E1422 Command Reference  227Chapter 6



ARM
ARM

The ARM Subayatem is only useful when the TRIGer:SOURce is set to TIMer. With 
the HP E1422, when the TRIG:SOURCE is set to TIMer, an ARM event must occur 
to start the timer. This can be something as simple as executing the 
ARM[:IMMediate] command, or it could be another event selected by 
ARM:SOURCE.

Note The ARM subsystem may only be used then the TRIGger:SOURce is 
TIMer. If the TRIGger:SOURce is not TIMer and ARM:SOURce is set to 
anything other than IMMediate, an Error -221,"Settings conflict" will be 
generated.

The ARM command subsystem provides:

• An immediate software ARM (ARM:IMM).

• Selection of the ARM source (ARM:SOUR BUS | EXT | HOLD | IMM | SCP | 
TTLTRG<n>) when TRIG:SOUR is TIMer.

Figure 6-2 shows the overall logical model of the Trigger System.

Figure 6-2. Logical Trigger Model
228 HP E1422 Command Reference  Chapter 6



ARM
Subsystem Syntax ARM
[:IMMediate]
:SOURce BUS | EXTernal | HOLD | IMMediate | SCP | TTLTrg<n>
:SOURce?

ARM[:IMMediate]

ARM[:IMMediate] arms the trigger system when the module is set to the ARM:SOUR 
BUS or ARM:SOUR HOLD mode.

Comments • Related Commands: ARM:SOURCE, TRIG:SOUR

• *RST Condition: ARM:SOUR IMM

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage ARM:IMM After INIT, system is ready for trigger 
event

ARM Same as above (:IMM is optional)

ARM:SOURce

ARM:SOURce  <arm_source> configures the ARM system to respond to the 
specified source.

Parameters

Comments • The following table explains the possible choices.

• See note about ARM subsystem on page 228.

• When TRIG:SOURCE is TIMER, an ARM event is required only to trigger the 
first scan. After that the timer continues to run and the module goes to the 
Waiting For Trigger State ready for the next Timer trigger. An ABORT 
command will return the module to the Trigger Idle State after the current scan 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

arm_source discrete (string) BUS | EXT | HOLD | IMM | SCP 
| TTLTrg<n>

none

BUS ARM[:IMMediate]

EXTernal “TRG” signal on terminal module

HOLD ARM[:IMMediate]

IMMediate The arm signal is always true (continuous arming).

SCP SCP Trigger Bus (future HP or SCP Breadboard)

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)
HP E1422 Command Reference  229Chapter 6



ARM
is completed. See TRIG:SOURce for more detail.

While ARM:SOUR is IMM, you need only INITiate the trigger system to start a 
measurement scan.

• When Accepted: Before INIT only.

• Related Commands: ARM:IMM, ARM:SOURCE?, INIT[:IMM], 
TRIG:SOUR

• *RST Condition: ARM:SOUR IMM

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage ARM:SOUR  BUS Arm with ARM command
ARM:SOUR TTLTRG3 Arm with VXIbus TTLTRG3 line

ARM:SOURce?

ARM:SOURce? returns the current arm source configuration. See the ARM:SOUR 
command for more response data information.

• Returned Value: Discrete, one of BUS, HOLD, IMM, SCP, or TTLT0 through 
TTLT7. The data type is string.

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage ARM:SOUR? An enter statement return arm source 
configuration
230 HP E1422 Command Reference  Chapter 6



CALibration
CALibration

The Calibration subsystem provides for two major categories of calibration.

1. "A/D Calibration"; In these procedures, an external multimeter is used to 
calibrate the A/D gain on all 5 of its ranges. The multimeter also determines 
the value of the HP E1422’s internal calibration resistor. The values generated 
from this calibration are then stored in nonvolatile memory and become the 
basis for "Working Calibrations. These procedures each require a sequence of 
several commands from the CALibration subsystem (CAL:CONFIG…, 
CAL:VALUE…, and CAL:STORE ADC). Always execute *CAL? or a 
CAL:TARE operation after A/D Calibration.

2. "Working Calibration", of which there are three levels (see Figure 6-3):

-- "A/D Zero"; This function quickly compensates for any short term A/D 
converter offset drift. This would be called the auto-zero function in a 
conventional voltmeter. In the HP E1422 where channel scanning speed is 
of primary importance, this function is performed only when the 
CAL:ZERO? command is executed. Execute CAL:ZERO? as often as your 
control setup will allow.

-- "Channel Calibration"; This function corrects for offset and gain errors for 
each module channel. The internal current sources are also calibrated. This 
calibration function corrects for thermal offsets and component drift for 
each channel out to the input side of the Signal Conditioning Plug-On 
(SCP). All calibration sources are on-board and this function is invoked 
using either the *CAL? or CAL:SETup command.

-- "Channel Tare"; This function (CAL:TARE) corrects for voltage offsets in 
external system wiring. Here, the user places a short across transducer 
wiring and the voltage that the module measures is now considered the new 
"zero" value for that channel. The new offset value can be stored in 
non-volatile calibration memory (CAL:STORE TARE) but is in effect 
whether stored or not. System offset constants which are considered 
long-term should be stored. Offset constants which are measured relatively 
often would not require non-volatile storage. CAL:TARE automatically 
executes a *CAL?

-- "Remote Channel Calibration"; This function corrects for gain and offset 
errors in each channel of a Remote Signal Conditioning unit (RSC). Each 
RSC has its own calibration voltage source as well as shorting switches. The 
calibration source is measured through dedicated analog connections 
between the HP E1539A SCP and the RSC. The source is then used to 
stimulate the RSCs amplifiers to calibrate gain. The shorting switches 
provide a zero volt source to calibrate offset.
HP E1422 Command Reference  231Chapter 6



CALibration
Figure 6-3. Levels of Working Calibration

Subsystem Syntax CALibration
:CONFigure

:RESistance
:VOLTage  <range>, ZERO | FS

:REMote?
:DATA <cal_data_block>
:DATA?
:STORe

:SETup
:SETup?
:STORe ADC | TARE
:TARE (@<ch_list>)

:RESet
:TARE?
:VALue

:RESistance  <ref_ohms>
:VOLTage  <ref_volts>

:ZERO?

CALibration:CONFigure:RESistance 

CALibration:CONFigure:RESistance connects the on-board reference resistor to 
the Calibration Bus. A four-wire measurement of the resistor can be made with an 
external multimeter connected to the HCAL, LCAL, HOHM, and LOHM terminals 
on the Terminal Module, or the V H, V L, Ω H, and Ω L terminals on the Cal Bus 
connector when not using a terminal module.
232 HP E1422 Command Reference  Chapter 6



CALibration
Comments • Related Commands: CAL:VAL:RES, CAL:STOR ADC

• When Accepted: Not while INITiated

• Send with VXIplug&play Function: hpe1422_cmd(...)

Command
Sequence

CAL:CONF:RES connect reference resistor to Calibration 
Bus

*OPC? or SYST:ERR? must wait for CAL:CONF:RES to 
complete

(now measure ref resistor with external DMM)
CAL:VAL:RES  <measured value> Send measured value to module
CAL:STORE ADC Store cal constants in non-volatile 

memory (used only at end of complete cal 
sequence)

CALibration:CONFigure:VOLTage

CALibration:CONFigure:VOLTage  <range>,<zero_fs> connects the on-board 
voltage reference to the Calibration Bus. A measurement of the source voltage can 
be made with an external multimeter connected to the H Cal and L Cal terminals on 
the Terminal Module, or the V H, V L, Ω H, and Ω L terminals on the Cal Bus 
connector when not using a terminal module. The range parameter controls the 
voltage level available when the zero_fs parameter is set to FSCale (full scale).

Parameters

Comments • The range parameter must be within ±5% of one of the 5 following values:
.0625VDC, .25VDC, 1VDC, 4VDC, 16VDC
range may be specified in millivolts (mv).

• The expected FSCALE output voltage of the calibration source will be 
approximately 90% of the nominal value for each range, except the 16V range 
where the output is 10V.

• When Accepted: Not while INITiated

• Related Commands: CAL:VAL:VOLT, STOR ADC

• Send with VXIplug&play Function: hpe1422_cmd(...)

Command
Sequence

CAL:CONF:VOLTAGE  .0625, ZERO connect voltage reference to Calibration 
Bus

*OPC? or SYST:ERR? must wait for CAL:CONF:VOLT to 
complete

(now measure voltage with external DMM)
CAL:VAL:VOLT  <measured value> Send measured value to module

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

range numeric (float32) see comments volts

zero_fs discrete (string) ZERO | FSCale none
HP E1422 Command Reference  233Chapter 6



CALibration

7 
repeat above sequence for full-scale
repeat zero and full-scale for remaining ranges (.25, 1, 4, 16)
CAL:STORE ADC Store cal constants in non-volatile 

memory (used only at end of complete cal 
sequence)

CALibration:REMote?

CALibration:REMote? (@<ch_list>) calibrates one or more entire Remote Signal 
Conditioning Units like the HP E1529A. Only a single channel per RSCU unit need 
be specified in <ch_list> and all channels on that RSC Unit will be calibrated. 
<ch_list> can contain multiple channels that specify multiple RSC Units. CAL:REM? 
returns a value when all RSC Units specified in <ch_list> have been calibrated (see 
comments below).

Note that the scope of the *CAL? and CAL:SETup commands is limited to the 
HP E1422A and the SCPs it contains. They do not calibrate Remote Signal 
Conditioning Units like the HP E1529A. You must use CAL:REMote in addition to 
*CAL?/CAL:SETup for RSCUs.

Parameters

Comments • Individual channels in ch_list must be for RSCUs, although channel ranges may 
span non-RSCU channels. If ch_list specifies a channel not connected through 
an HP E1539A SCP, a 3007 "Invalid signal conditioning plug-on" error is 
generated.

• Returned Value: 

The data type for this returned value is int16.

• Failure Information for +1 return: The FIFO buffer will contain pairs of values. 
The first value will be the failing channel, and the second value is the Failure 
Code for that channel. Failure Codes found in the FIFO buffer are:

a. Offset exceeds limit. Failure code is 1000.0 + (the offset measured)
b. Gain error exceeds limit. Failure code is 2000.0 + (ideal gain - actual gain)

• Immediately after CAL:REM?, the new calibration constants are used for 
subsequent measurements but are in volatile memory. Where these calibration 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list channel list (string) 10000 - 15731 none

Value Meaning Further Action

0 Cal OK None

1 Error during
remote calibration

Error information in FIFO buffer. See 
faulure codes below.

-1 Couldn’t start 
remote calibration

Query the Error Queue (SYST:ERR?)
See error messages starting on page 40
234 HP E1422 Command Reference  Chapter 6



CALibration
values need to be retained for long periods, they can be stored into non-volatile 
memory using the CAL:REM:STORE command.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

CALibration:REMote:DATA

CALibration:REMote:DATA <cal_data_block> restores the remote calibration 
constants acquired using the CAL:REM:DATA? query after a remote calibration 
operation. These calibration constants go into effect immediately.

Parameters

Comments • CAL:REM:DATA sends to the HP E1422A a definite length block of 1024 
float64 values that represent an offset and gain pair (in that order) for each of 
512 possible remote channels. The block must always be 1024, float64 values 
(8192 bytes) regardless how many RSCUs are actually connected to the 
HP E1422A. Values for channel positions that are not installed are "place 
holders". 

• *RST Condition: Stored calibration constants are unchanged

• Send with VXIplug&play Function: hpe1422_sendBlockReal64(...)

CALibration:REMote:DATA?

CALibration:REMote:DATA? extracts the remote calibration constants generated 
using the CAL:REMote? command.

Comments • CAL:REM:DATA returns a definite length block of 1024 float32 values that 
represent a gain and offset pair for each of 512 possible remote channels. The 
block is always 1024, float64 values (8192 bytes) regardless how many RSCUs 
are actually connected to the HP E1422A. Values for channel positions where 
RSCUs are not installed are set to 0.000. 

• Returned Value: the 1024 float64 values form 512 channel calibration pairs. A 
pair of calibration constants consists of first a channel offset value, then a 
channel gain value.

• *RST Condition: Stored calibration constants are unchanged

• Send with VXIplug&play Function: hpe1422_cmdReal64Arr_Q(...)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

cal_data_block definite length block 
data (float32 array)

see comments none
HP E1422 Command Reference  235Chapter 6



CALibration

ry.  

 

CALibration:REMote:STORe

CALibration:REMote:STORe (@<ch_list>) copies the calibration constants held in 
working RAM since remote calibration into the RSCU’s non-volatile flash memo
Only a single channel per RSCU unit need be specified in <ch_list> and all cal 
constants for that RSC Unit will be stored. <ch_list> can contain multiple channels
that specify multiple RSC Units.

Parameters

Comments • Individual channels in ch_list must be for RSCUs. If ch_list specifies a channel 
not connected through an HP E1539A SCP, a 3007 "Invalid signal conditioning 
plug-on" error is generated.

Note An RSCU’s Flash Memory has a finite lifetime of approximately ten 
thousand write cycles (unlimited read cycles). While executing 
CAL:REM:STOR once every day would not exceed the lifetime of the 
Flash Memory for approximately  27 years, an application that stored 
constants many times each day would unnecessarily shorten the Flash 
Memory’s lifetime. See Comments below.

• After remote calibration, an RSCUs calibration constants are in live (volatile) 
memory and are available for operation. If you plan to calibrate your RSCUs 
often, (especially after a line power failure, you don,t have to store them in flash 
memory.

• Send with VXIplug&play Function: hpe1422_cmd_Q(...)

CALibration:SETup

CALibration:SETup causes the Channel Calibration function to be performed for 
every module channel with an analog SCP installed (input or output). The Channel 
Calibration function  calibrates the A/D Offset,  and the Gain/Offset for these analog 
channels. This calibration is accomplished using internal calibration references. For 
more information see *CAL? on page 357.

Note that the scope of the *CAL? and CAL:SETup commands is limited to the 
HP E1422A and the SCPs it contains. They do not calibrate Remote Signal 
Conditioning Units like the HP E1529A. You must use CAL:REMote? in addition 
to *CAL?/CAL:SETup for RSCs.

Comments • CAL:SET performs the same operation as the *CAL? command except that since 
it is not a query command it doesn’t tie-up the driver waiting for response data 
from the instrument. If you have multiple HP E1422s in your system you can 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list channel list (string) 10000 - 15731 none
236 HP E1422 Command Reference  Chapter 6



CALibration

ead 
as 
n 
l 

  
start a CAL:SET operation on each and then execute a CAL:SET? command to 
complete the operation on each instrument.

• Related Commands: CAL:SETup?, *CAL?

• When Accepted: Not while INITiated

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage CAL:SET start SCP Calibration on 1st HP E1422
: start SCP Calibration on more 

HP E1422s
CAL:SET start SCP Calibration on last HP E1422
CAL:SET? query for results from 1st HP E1422
: query for results from more HP E1422s
CAL:SET? query for results from last HP E1422

CALibration:SETup?

CALibration:SETup? Returns a value to indicate the success of the last CAL:SETup 
or *CAL? operation. CAL:SETup? returns the value only after the CAL:SETup 
operation is complete.

Comments • Returned Value: 

The data type for this returned value is int16.

• Related Commands: SYST:ERR?, CAL:SETup, *CAL?

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage see CAL:SETup

CALibration:STORe

CALibration:STORe  <type> stores the HP E1422A’s most recently measured 
calibration constants into Flash Memory (Electrically Erasable Programmable R
Only Memory). When type=ADC, the module stores its A/D calibration constants 
well as constants generated from *CAL?/CAL:SETup into Flash Memory. Whe
type=TARE, the module stores the most recently measured CAL:TARE channe
offsets into Flash Memory.

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See error message “3026” on page 408

Also run *TST?

-2 No results available No *CAL? or CAL:SETUP done
HP E1422 Command Reference  237Chapter 6



CALibration
Note The HP E1422’s Flash Memory has a finite lifetime of approximately ten 
thousand write cycles (unlimited read cycles). While executing CAL:STOR 
once every day would not exceed the lifetime of the Flash Memory for 
approximately  27 years, an application that stored constants many times 
each day would unnecessarily shorten the Flash Memory’s lifetime. See 
Comments below.

Parameters

Comments • The Flash Memory Protect jumper (JM2201) must be set to the enable position 
before executing this command (See “Disabling Flash Memory Access 
(optional)” on page 27).

• Channel offsets are compensated by the CAL:TARE command even when not 
stored in the Flash Memory. There is no need to use the CAL:STORE TARE 
command for channels which are re-calibrated frequently.

• When Accepted: Not while INITiated

• Related Commands: CAL:VAL:RES, CAL:VAL:VOLT

• *RST Condition: Stored calibration constants are unchanged

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage CAL:STORE  ADC Store cal constants in non-volatile 
memory after A/D calibration

CAL:STORE  TARE Store channel offsets in non-volatile 
memory after channel tare

Command
Sequence

Storing A/D cal constants

perform complete A/D calibration, then...
CAL:STORE  ADC

Storing channel tare (offset) values

CAL:TARE  <ch_list> to correct channel offsets
CAL:STORE  TARE Optional depending on necessity of long 

term storage

CALibration:TARE

CALibration:TARE  (@<ch_list>) measures offset (or tare) voltage present on the 
channels specified and stores the value in on-board RAM as a calibration constant 
for those channels. Future measurements made with these channels will be 
compensated by the amount of the tare value. Use CAL:TARE to compensate for 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

type discrete (string) ADC | TARE none
238 HP E1422 Command Reference  Chapter 6



CALibration

A, 
t in 
 for 

not

e or 
 the 

ient 

hat 

 

rting 
ese 
voltage offsets in system wiring and residual sensor offsets. Where tare values need 
to be retained for long periods, they can be stored in the module’s Flash Memory 
(Electrically Erasable Programmable Read Only  Memory) by executing the 
CAL:STORe TARE command.
For more information See “Compensating for System Offsets” on page 148

Note for RSC Units CAL:TARE does not remove offsets in an RSCs field wiring. For the HP E1529
the SENS:STR:UNSTrained value is the equivalent of the tare offset. Any offse
the analog signal line between the HP E1529A SCP and an RSC is accounted
during the CAL:REMote? operation.

Notes For
Thermocouples

1. You must not use CAL:TARE on field wiring that is made up of 
thermocouple wire. The voltage a thermocouple wire pair generates can  
be removed by introducing a short anywhere between its junction and its 
connection to an isothermal panel (either the HP E1422's Terminal Modul
a remote isothermal reference block). Thermal voltage is generated along
entire length of a thermocouple pair where there is any temperature grad
along that length. To CAL:TARE thermocouple wire this way would 
introduce an unwanted offset in the voltage/temperature relationship for t
channel. If you inadvertently CAL:TARE a thermocouple wire pair, use 
CAL:TARE:RESET to reset all tare constants to zero.

2. You should use CAL:TARE to compensate wiring offsets (copper wire, not
thermocouple wire) between the HP E1422 and a remote thermocouple 
reference block. Disconnect the thermocouples and introduce copper sho
wires between each channel's HI and LO, then execute CAL:TARE for th
channels.

Parameters

Comments • CAL:TARE also performs the equivalent of a *CAL? operation. This operation 
uses the Tare constants to set a DAC which will remove each channel offset as 
"seen" by the module’s A/D converter. As an example assume that the system 
wiring to channel 0 generates a +0.1Volt offset with 0Volts (a short) applied at 
the Unit Under Test (UUT). Before CAL:TARE the module would return a 
reading of 0.1Volts for channel 0. After CAL:TARE (@100), the module will 
return a reading of 0Volts with a short applied at the UUT and the system wiring 
offset will be removed from all measurements of the signal to channel 0.

• The CAL:TARE command may be issued to several HP E1422As to be later 
completed with a matching CAL:TARE? query sent to each instrument. Note if 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list channel list (string) 100 - 15731 none
HP E1422 Command Reference  239Chapter 6



CALibration
the DIAG:CAL:TARE:OTD:MODE is set to "1" then the CAL:TARE command 
will not return until the calibration is complete.

• Set Amplifier/Filter SCP gain before CAL:TARE. For best accuracy, choose the 
gain that will be used during measurements. If you decide to change the range 
or gain setup later, be sure to perform another *CAL?.

• If Open Transducer Detect (OTD) is enabled when CAL:TARE is executed, the 
module will disable OTD, wait 1 minute to allow channels to settle, perform the 
calibration, and then re-enable OTD. If your program turns off OTD before 
executing CAL:TARE, your application should also wait 1 minute for settling. 
If the DIAG:CAL:TARE:OTD:MODE is set to "1", the OTD will remain 
enabled throughout the TARE calibration. This allows the voltage generated by 
the OTD current to also be removed by the TARE cal.

• The maximum voltage that CAL:TARE can compensate for is dependent on the 
range chosen and SCP gain setting. The following table lists these values.

• Channel offsets are compensated by the CAL:TARE command even when not 
stored in the Flash Memory. There is no need to use the CAL:STORE TARE 
command for channels which are re-calibrated frequently.

• The HP E1422’s Flash Memory has a finite lifetime of approximately ten 
thousand write cycles (unlimited read cycles). While executing CAL:STOR 
once every day would not exceed the lifetime of the Flash Memory for 
approximately  27 years, an application that stored constants many times each 
day would unnecessarily shorten the Flash Memory’s lifetime. See Comments 
below.

• Executing CAL:TARE sets the Calibrating bit (bit 0) in Operation Status Group. 
Executing CAL:TARE? resets the bit.

• Because CAL:TARE also performs a *CAL? operation, completion of 
CAL:TARE may take many minutes to complete. The actual time it will take 
your HP E1422 to complete CAL:TARE depends on the mix of SCPs installed. 
CAL:TARE performs literally hundreds of measurements of the internal 
calibration sources for each channel and must allow 17 time constants of settling 
wait each time a filtered channel’s calibrations source value is changed. The 
CAL:TARE procedure is internally very sophisticated and results in an 
extremely well calibrated module.

Maximum CAL:TARE Offsets

A/D range
±V F.Scale

Offset V
Gain x1

Offset V
Gain x8

Offset V
Gain x16

Offset V
Gain x64

16
4
1

.25
.0625

3.2213
.82101
.23061
.07581
.03792

  .40104
.10101
.02721
.00786
.00312

.20009

.05007

.01317

.00349

.00112

.04970

.01220

.00297

.00055
n/a
240 HP E1422 Command Reference  Chapter 6



CALibration

 

• Any output type channels in <ch_list> are ignored during CAL:TARE.

• When Accepted: Not while INITiated

• Related Commands: CAL:TARE?, CAL:STOR TARE, 
DIAG:CAL:TARE:OTD:MODE

• *RST Condition: Channel offsets are not affected by *RST.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Command
Sequence

CAL:TARE  <ch_list> to correct channel offsets
CAL:TARE? to return the success flag from the 

CAL:TARE operation
CAL:STORE  TARE Optional depending on necessity of long 

term storage

CALibration:TARE:RESet

CALibration:TARE:RESet resets the tare calibration constants to zero for all 
64 channels. Executing CAL:TARE:RES affects the tare cal constants in RAM only. 
To reset the tare cal constants in Flash Memory, execute CAL:TARE:RES and then 
execute CAL:STORE TARE.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Command
Sequence

CAL:TARE:RESET to reset channel offsets
CAL:STORE  TARE Optional if necessary to reset tare cal 

constants in Flash Memory.

CALibration:TARE?

CALibration:TARE? Returns a value to indicate the success of the last CAL:TARE 
operation. CAL:TARE? returns the value only after the CAL:TARE operation is 
complete.

• Returned Value: 

The data type for this returned value is int16.

• Executing CAL:TARE sets the Calibrating bit (bit 0) in Operation Status Group. 

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See “Error Messages” on page 407 Also

run *TST?

-2 No results available Perform CAL:TARE
before CAL:TARE?
HP E1422 Command Reference  241Chapter 6



CALibration

fy 
Executing CAL:TARE? resets the bit.

• Related Commands: CAL:STOR TARE

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Command
Sequence

CAL:TARE  <ch_list> to correct channel offsets
CAL:TARE? to return the success flag from the 

CAL:TARE operation
CAL:STORE  TARE Optional depending on necessity of long 

term storage

CALibration:VALue:RESistance 

CALibration:VALue:RESistance  <ref_ohms> sends the just-measured value of 
the on-board reference resistor to the module for A/D calibration.

Parameters

Comments •  Use the CAL:CONF:RES command to configure the reference resistor for 
measurement at the Calibration Bus connector.

•  A four-wire measurement of the resistor can be made with an external 
multimeter connected to the HCAL, LCAL, HOHM, and LOHM terminals on 
the Terminal Module, or the V H, V L, Ω H, and Ω L terminals on the Cal Bus 
connector when not using a terminal module.

• ref_ohms must be within 5% of the 7500Ω nominal reference resistor value or 
a -222 ’Data out of range’ error will be generated.  If this error occurs, veri
your external measurement equipment and run *TST? on your 1422A.

• ref_ohms may be specified in Kohm (kohm).

• When Accepted: Not while INITiated

• Related Commands: CAL:CONF:RES, CAL:STORE ADC

• Send with VXIplug&play Function: hpe1422_cmd(...)

Command
Sequence

CAL:CONF:RES
(now measure ref resistor with external DMM)
CAL:VAL:RES  <measured value> Send measured value to module

CALibration:VALue:VOLTage

CALibration:VALue:VOLTage  <ref_volts> sends the value of the just-measured 

Parameter
Name

Parameter
Type

Range of
Value

Default 
Units

ref_ohms numeric (float32) 7,500 ± 5% ohms
242 HP E1422 Command Reference  Chapter 6



CALibration

 
 is 
ute 
DC reference source to the module for A/D calibration.

Parameters

Comments • The "expected" output values for the voltage reference source is:
0.9 * Nominal Range Value for the .0625 through 4 volt ranges.
10 volts for the 16 volt range.

• Use the CAL:CONF:VOLT command to configure the on-board voltage source 
for measurement by an external reference voltmeter via the Calibration Bus 
terminals.

•  A measurement of the source voltage can be made with an external multimeter 
connected to the HCAL, and LCAL terminals on the Terminal Module, or the 
V H, and V L terminals on the Cal Bus connector when not using a terminal 
module.

• The ref_volts value given must be for the currently configured range and output 
(zero or full scale) as set by the previous CAL:CONF:VOLT <range>, ZERO 
| FSCale command.

• ref_volts must be within 4% of the actual reference voltage value as read after 
CAL:CONF:VOLT, or an error 3042 ’0x400: DSP-DAC adjustment went to
limit’ will be generated. If the reading on your external reference voltmeter
in excess of 4% error from nominal voltage, verify your voltmeter and exec
*TST? on the HP E1422A.

• ref_volts may be specified in millivolts (mv).

•  When Accepted: Not while INITiated

• Related Commands: CAL:CONF:VOLT, CAL:STORE ADC

• Send with VXIplug&play Function: hpe1422_cmd(...)

Command
Sequence

CAL:CONF:VOLTAGE  4,FSCALE
*OPC? Wait for operation to complete
enter statement

(now measure voltage with external DMM)
CAL:VAL:VOLT  <measured value> Send measured value to module

CALibration:ZERO?

CALibration:ZERO? corrects Analog to Digital converter offset for any drift since 
the last *CAL? or CAL:ZERO? command was executed. The offset calibration takes 
about 5 seconds and should be done as often as you control set up allows.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ref_volts numeric (float32) must be within +10% or -50% of the 
"expected" source output value

volts
HP E1422 Command Reference  243Chapter 6



CALibration
Comments • The CAL:ZERO? command only corrects for A/D offset drift (zero). Use the 
*CAL? common command to perform on-line calibration of channels as well as 
A/D offset. *CAL? performs gain and offset correction of the A/D and each 
channel with an analog SCP installed (both input and output).

• Returned Value: 

The data type for this returned value is int16.

• Executing this command does not alter the module’s programmed state 
(function, range etc.).

• Related Commands: *CAL?

• *RST Condition: A/D offset performed

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage CAL:ZERO?
enter statement here returns 0 or -1

Value Meaning Further Action

0 Cal OK None

-1 Cal  Error Query the Error Queue (SYST:ERR?)
See “Error Messages” on page 407
244 HP E1422 Command Reference  Chapter 6



DIAGnostic
DIAGnostic

The DIAGnostic subsystem allows you to perform special operations that are not 
standard in the SCPI language.  This includes checking the current revision of the 
Control Processor’s firmware, and that it has been properly loaded into Flash Memory.

Subsystem Syntax DIAGnostic
:CALibration

:SETup
:MODE 0 | 1
:MODE?

:TARe
[:OTD]

:MODE 0 | 1
:MODE?

:CHECksum?
:CONNect <source>,<mode>,(@<ch_list>)
:CUSTom

:MXB <slope>,<offset>,(@<ch_list>)
:PIECewise <table_range>,<table_block>,(@<ch_list>)
:REFerence

:TEMPerature
:IEEE 1 | 0
:IEEE?
:INTerrupt

[:LINe]  <intr_line>
[:LINe]?

:OTDetect
[:STATe]  1 | 0 | ON | OFF,(@<ch_list>)
[:STATe]?  (@<channel>)

:QUERy
:SCPREAD? <reg_addr>

:REMote
:USER

:DATA <user_data_block>,(@<ch_list>)
:DATA? (@<ch_list>)

:TEST
:REMote

:NUMber? <test_num>,<iterations>,(@<channel>)
:SELFtest? (@<channel>)

:SELFtest?
:VERSion?

DIAGnostic:CALibration:SETup[:MODE]

DIAGnostic:CALibration:SETup[:MODE] <mode> sets the type of calibration to 
use for analog output SCPs like the HP E1531 and HP E1532 when *CAL? or  
HP E1422 Command Reference  245Chapter 6



DIAGnostic
CAL:SET are executed.

Parameters

Comments • When <mode> is set to 1 (the *RST Default) channels are calibrated using the 
Least Squares Fit method to provide the minimum error overall (over the entire 
output range). When <mode> is 0, channels are calibrated to provide the 
minimum error at their zero point. See your SCPs User’s Manual for its accuracy 
specifications using each mode.

• Related Commands: *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

• *RST Condition: DIAG:CAL:SET:MODE 1

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage set analog DAC SCP cal mode for best zero accuracy
DIAG:CAL:SET:MODE 0 set mode for best zero cal
*CAL? start channel calibration

DIAGnostic:CALibration:SETup[:MODE]?

DIAGnostic:CALibration:SETup[:MODE]? returns the currently set calibration 
mode for analog output DAC SCPs. 

Comments • Returns a 1 when channels are calibrated using the Least Squares Fit method to 
provide the minimum error overall (over the entire output range). Returns a 0 
when channels are calibrated to provide the minimum error at their zero point. 
See your SCPs User’s Manual for its accuracy specifications using each mode. 
The data type is int16.

• Related Commands: DIAG:CAL:SET:MOD, *CAL?, CAL:SET

• *RST Condition: DIAG:CAL:SET:MODE 1

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

DIAGnostic:CALibration:TARE[:OTDetect]:MODE

DIAGnostic:CALibration:TARE[:OTDetect]:MODE <mode> sets whether Open 
Transducer Detect current will be turned off or left on (the default mode) during the 
CAL:TARE operation.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

mode boolean (uint 16)  0 | 1 volts
246 HP E1422 Command Reference  Chapter 6



DIAGnostic
Parameters

Comments • When <mode> is set to 0 (the *RST Default), channels are tare calibrated with 
their OTD current off. When <mode> is 1, channels that have their OTD current 
on (DIAGnostic:OTDetect ON,(@<ch_list>)) are tare calibrated with their 
OTD current left on.

• By default (*RST) the CALibration:TARE? command will calibrate all channels 
with the OTD circuitry disabled. This is done for two reasons: first, most users 
do not leave OTD enabled while taking readings, and second, the 
CALibration:TARE? operation takes much longer with OTD enabled. However, 
for users who intend to take readings with OTD enabled, setting 
DIAG:CAL:TARE:OTD:MODE to 1, will force the CAL:TARE? command to 
perform calibration with OTD enabled on channels so specified by the user with 
the DIAG:OTD command. 

• Related Commands: *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

• *RST Condition: DIAG:CAL:TARE:MODE 0

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage configure OTD on during CAL:TARE
DIAG:CAL:TARE:MODE 1 set mode for OTD to stay on
CAL:TARE? start channel tare cal.

DIAGnostic:CALibration:TARE[:OTDetect]:MODE?

DIAGnostic:CALibration:TARE[:OTDetect]:MODE?  returns the currently set 
mode for controlling Open Transducer Detect current while performing CAL:TARE? 
operation.

Comments • Returns a 0 when OTD current will be turned off during CAL:TARE?. Returns 
1 when OTD current will be left on during CAL:TARE? operation. The data 
type is int16.

• Related Commands: DIAG:CAL:TARE:MOD, DIAG:OTD, CAL:TARE?

• *RST Condition: DIAG:CAL:TARE:MODE 0

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

DIAGnostic:CHECksum?

DIAGnostic:CHECksum? performs a checksum operation on Flash Memory. A 
returned value of 1 indicates that Flash memory contents are correct. A returned value 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

mode boolean (uint 16)  0 | 1 volts
HP E1422 Command Reference  247Chapter 6



DIAGnostic
of 0 indicates that the Flash Memory is corrupted, or has been erased.

Comments • Returned Value: Returns 1 or 0. The data type is int16. 

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage DIAG:CHEC? Checksum Flash Memory, return 1 for 
OK, 0 for corrupted

DIAGnostic:CONNect

DIAGnostic:CONNect <source>,<mode>,(@<ch_list>)  configures the 
HP E1529A to verify its measurement paths by measuring either the internal 
calibration source or an internal short for all 32 channels. You must define a matching 
scan list, trigger the instrument, and read the results from the FIFO or CVT.

Note The command DIAG:TEST:REMote:SELFtest? actually performs all of 
the verification functions this command provides and in addition includes 
filter and scanner tests.

Parameters

Comments • <source> specifies the source to measure. NORMal configures all inputs to 
measure user inputs. SHORT specifies the internal calibration short. SOURce 
specifies the internal 100mV calibration source.

• <mode>: ALL connects all channels to the specified <source>. ALT connects 
channels alternately to the SHORt or the SOURce. When <mode> is ALT, the 
<source> parameter specifies which source is connected to the first channel.For 
example, when <source> is SHORt, even channels are 0V, odd channels are .1V

• <ch_list> specifies which HP E1529A to configure. Specifying any channel on 
the an HP E1529A configures all channels on the unit.

• You must execute DIAG:CONN NORM,ALL,(@<ch_list>) to reset units for 
normal measurements. 

• Related Commands: [SENSe:]DATA:FIFO?

• *RST Condition: DIAG:CONN ALL, NORM for all HP E1529A channels

• Send with VXIplug&play Function: hpe1422_cmd(...)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

source discrete (string) NORM | SHORt | SOURce none

mode discrete (string) ALL | ALT none

ch_list channel list (string) 10000 - 15700 none
248 HP E1422 Command Reference  Chapter 6



DIAGnostic

ith 

ith 
DIAGnostic:CUSTom:MXB

DIAGnostic:CUSTom:MXB <slope>,<offset>,(@<ch_list>)  sends the <slope> 
and <offset> parameters that allow the driver to calculate and download a custom 
linear Engineering Unit Conversion table to the HP E1422A. Use the 
“[SENSe:]FUNCtion:CUSTom” on page 308 to link this custom EU conversion w
channels in <ch_list>.

Parameters

Comments • <slope> specifies the linear function’s "slope":

• <offset> specifies the conversion offset at zero input volts. This parameter is also 
commonly known as the "Y-intercept".

• <ch_list> specifies which channels may use this custom linear function. 

• Related Commands: [SENSe:]FUNCtion:CUSTom (<ch_list>)

• *RST Condition: All custom EU tables erased

• Send with VXIplug&play Function: hpe1422_cmd(...)

DIAGnostic:CUSTom:MXB

DIAGnostic:CUSTom:MXB <slope>,<offset>,(@<ch_list>)  sends the <slope> 
and <offset> parameters that allow the driver to calculate and download a custom 
linear Engineering Unit Conversion table to the HP E1422A. Use the 
“[SENSe:]FUNCtion:CUSTom” on page 308 to link this custom EU conversion w
channels in <ch_list>.

Parameters

Comments • <slope> specifies the linear function’s "slope":

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

slope numeric (float32) limit of float32 none

offset numeric (float32) limit of float32 none

ch_list channel list (string) 100 - 163 none

foutp1 foutp0–( ) Vin1 Vin0–( )⁄

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

slope numeric (float32) limit of float32 none

offset numeric (float32) limit of float32 none

ch_list channel list (string) 100 - 163 none

foutp1 foutp0–( ) Vin1 Vin0–( )⁄
HP E1422 Command Reference  249Chapter 6



DIAGnostic
• <offset> specifies the conversion offset at zero input volts. This parameter is also 
commonly known as the "Y-intercept".

• <ch_list> specifies which channels may use this custom linear function. 

• Related Commands: [SENSe:]FUNCtion:CUSTom (<ch_list>)

• *RST Condition: All custom EU tables erased

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage DIAG:CUST:MXB 2.1,.19,(@10000:10131) create table for chs 0000-0131
SENS:FUNC:CUST 1,1,(@10000:10131) link custom EU with chs 0000-0131

DIAGnostic:CUSTom:PIECewise

DIAGnostic:CUSTom:PIECewise <table_range>,<table_block>, (@<ch_list>)  
downloads a custom piece wise Engineering Unit Conversion table (in 
<table_block>) to the HP E1422. Contact your Hewlett-Packard System Engineer 
for more information on Custom Engineering Unit Conversion for your application. 

Parameters

Comments • <table_block> is a block of 1,024 bytes that define 512 16-bit values. SCPI 
requires that <table_block> include the definite length block data header. The 
VXIplug&play function hpe1415_sendBlockUInt16(ViSession vi, ViString 
cmd_str, ViInt32 table[ ], ViInt32 size) adds the header for you.

• <table_range> specifies the range of voltage that the table covers (from 
-<table_range> to +<table_range>).

• <ch_list> specifies which channels may use this custom EU table.

• Related Commands: [SENSe:]FUNCtion:CUSTom

• *RST Condition: All custom EU tables erased.

• Use VXIplug&play function: hpe1422_sendBlockUInt16(...)

Usage program puts table constants into array table_block
DIAG:CUST:PIEC table_block,(@124:131) send table for chs 24-31 to HP E1422
SENS:FUNC:CUST 1,1,(@124:131) link custom EU with chs 24-31

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

table_range numeric (float32) .015625 | .03125 | .0625 | .125 | .25 | .5 | 
1 | 2 | 4 | 8 | 16 | 32 | 64

volts

table_block definite length block 
data

see comments none

ch_list channel list (string) 100 - 163 none
250 HP E1422 Command Reference  Chapter 6



DIAGnostic
INITiate then TRIGger module

DIAGnostic:CUSTom:REFerence:TEMPerature

DIAGnostic:CUSTom:REFerence:TEMPerature extracts the current Reference 
Temperature Register Contents, converts it to 32-bit floating point format and sends 
it to the FIFO. This command is used to verify that the reference temperature is as 
expected after measuring it using a custom reference temperature EU conversion 
table.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage your program must have EU table values stored in table_block
download the new reference EU table

DIAG:CUST:PIECEWISE <table_range>,<table_block>,(@<ch_list>)
designate channel as reference

SENS:FUNC:CUST:REF <range>,(@<ch_list>)
set up scan list sequence (ch 0 in this case)

Now run the algorithm that uses the custom reference conversion table
dump reference temp register to FIFO

DIAG:CUST:REF:TEMP
read the diagnostic reference temperature value

SENS:DATA:FIFO?

DIAGnostic:IEEE

DIAGnostic:IEEE <mode> enables (1) or disables (0) IEEE-754 NAN (Not A 
Number) and ±INF value outputs. This command was created for the HP VEE 
platform.

Parameters

Comments • When <mode> is set to 1, the module can return ±INF and NAN values according 
to the IEEE-754 standard. When <mode> is set to 0, the module returns  values 
as ±9.9E37 for INF and 9.91E37 for NAN.

• Related Commands: DIAG:IEEE?

• *RST Condition: DIAG:IEEE 1

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage Set IEEE mode 

DIAG:IEEE 1 INF values returned in IEEE standard

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

mode boolean (uint 16)  0 | 1 volts
HP E1422 Command Reference  251Chapter 6



DIAGnostic
DIAGnostic:IEEE?

DIAGnostic:IEEE?  returns the currently set IEEE mode.

Comments • The data type is int16.

• Related Commands: DIAG:IEEE

• *RST Condition: DIAG:IEEE 1

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

DIAGnostic:INTerrupt[:LINe]

DIAGnostic:INTerrupt[:LINe]  <intr_line> sets the VXIbus interrupt line the 
module will use.

Parameters

Comments • Related Commands: DIAG:INT:LINE?

• Power-on and *RST Condition: DIAG:INT:LINE 1

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage DIAG:INT:LINE  5 Module will interrupt on  interrupt line 5

DIAGnostic:INTerrupt[:LINe]?

DIAGnostic:INTerrupt[:LINe]? returns the VXIbus interrupt line that the module is 
set to use.

Comments • Returned Value: Numeric 0 through 7. The data type is int16.

• Related Commands: DIAG:INT:LINE

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage DIAG:INT? Enter statement will return 0 through 7

DIAGnostic:OTDetect[:STATe]

DIAGnostic:OTDetect[:STATe]  <enable>,(@<ch_list>) enables and disables the 
HP E1422’s "Open Transducer Detection" capability (OTD). When Open Transducer 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

intr_line numeric (int16) 0 through 7 none
252 HP E1422 Command Reference  Chapter 6



DIAGnostic
Detection is enabled, a very high impedance path connects all SCP channels to a 
voltage source greater than 16 volts. If an enabled channel has an open transducer, 
the input signal becomes the source voltage and the channel returns an input 
over-range value. The value returned is +9.91E+37 (ASCII).   

Parameters

Comments • Open Transducer Detection is enabled/disabled on a whole Signal Conditioning 
Plug-on basis. Selecting any channel on an SCP selects all channels on that SCP 
(8 channels per SCP).

• The DIAG:CAL:TARE:MODE <mode> command affects how OTD is 
controlled during the CAL:TARE? operation. When <mode> is set to 0 (the 
*RST Default), channels are tare calibrated with their OTD current off. When 
<mode> is 1, channels that have their OTD current on 
(DIAGnostic:OTDetect ON,(@<ch_list>)) are tare calibrated with their OTD 
current left on.

• Related Commands: DIAG:OTDETECT:STATE?, 
DIAG:CAL:TARE:MODE

Note *RST Condition: DIAG:OTDETECT  OFF

If OTD is enabled when *CAL?, or CAL:TARE is executed, the module will disable 
OTD, wait 1 minute to allow channels to settle, perform the calibration, and then 
re-enable OTD.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage DIAG:OTD  ON,(@100:107,115:123) select OTD for the first and third SCP 
(complete channel lists for readability 
only)

DIAG:OTD:STATE  ON,(@100,115) same function as example above (only 
first channel of each SCP specified)

DIAG:OTDETECT:STATE  OFF,(@108) disable OTD for the 8 channels on the 
second SCP (only first channel of SCP 
specified)

DIAGnostic:OTDetect[:STATe]?

DIAGnostic:OTDetect[:STATe]? (@<channel>) returns the current state of "Open 
Transducer Detection" for the SCP containing the specified channel.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable  boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 100 - 163 none
HP E1422 Command Reference  253Chapter 6



DIAGnostic

of 
 
he 
n 
n the 
Parameters

Comments • channel must specify a single channel only.

• Returned Value: Returns 1 (enabled) or 0 (disabled). The data type is int16. 

• Related Commands: DIAG:OTDETECT:STATE ON | OFF

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage DIAG:OTD:STATE?  (@108) enter statement returns either a 1 or a 0

DIAGnostic:QUERy:SCPREAD?

DIAGnostic:QUERy:SCPREAD? <reg_addr> returns data word from a Signal 
Conditioning Plug-on register.

Parameters

Comments • NOTE: This command may not be used while instrument is INITed.

• Returned Value: returns numeric register value. data type is int32.

• Send with VXIplug&play Function: hpe1422_cmdInt32_Q(...)

Usage DIAG:QUERY:SCPREAD? 258 read Watchdog SCP’s config/status 
register

enter statement here return SCP ID value

DIAGnostic:REMote:USER:DATA

DIAGnostic:REMote:USER:DATA <user_data_block>,(@<channel> )stores 
894, 16-bit words of arbitrary user data to non-volatile flash memory. You can design 
your own format for the information you wish to store. For example, your data could 
define a 32 by 28 word array to store information about each channel.

Note A Remote Signal Conditioning Unit’s Flash Memory has a finite lifetime 
approximately ten thousand write cycles (unlimited read cycles). While
executing DIAG:REM:USER:DATA once every day would not exceed t
lifetime of the Flash Memory for approximately  27 years, an applicatio
that stored constants many times each day would unnecessarily shorte

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

reg_addr numeric (int32) 0-65,535 none
254 HP E1422 Command Reference  Chapter 6



DIAGnostic
Flash Memory’s lifetime.

Parameters

Comments • channel must specify a single channel only. The channel must be on an RSCU 
that supports the DIAG:REM:USER:DATA commands.

• DIAG:REM:USER:DATA sends to the RSCU a definite length block of 894 
int16 values (1,792 bytes). The block must always be 894 words in length.

• *RST Condition: Stored values not changed by *RST

• Use VXIplug&play function: hpe1422_sendBlockInt16(...)

DIAGnostic:REMote:USER:DATA?

DIAGnostic:REMote:USER:DATA? (@<channel>) extracts 894, 16-bit words of 
arbitrary user data from non-volatile flash memory (stored with the 
DIAG:REM:USER:DATA command). 

Parameters

Comments • channel must specify a single channel only. The channel must be on an RSCU 
that supports the DIAG:REM:USER:DATA commands.

• Returned Value: DIAG:REM:USER:DATA? returns an IEEE definite length  
data block which represents an array of 894, int16 values.

• RST Condition: Stored values not changed by *RST

• Send with VXIplug&play Function: hpe1422_cmdInt16Arr_Q(...)

DIAGnostic:TEST:REMote:NUMber?

DIAGnostic:TEST:REMote:NUMber? <test_num>,<iterations>,(@<channel>) 
executes a selected self-test number on a single Remote Signal Conditioning Unit 
connected through the HP E1539A SCP. See DIAG:TEST:REM:SELF? for details 
of each test.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

user_data_block definite length block 
data (int16 array)

each element -32768 - 32767 none

channel channel list (string) 10000 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 10000 - 15731 none
HP E1422 Command Reference  255Chapter 6



DIAGnostic

st 

7 
Parameters

Comments • <test_num> specifies the test to perform. See 
“DIAGnostic:TEST:REMote:SELFtest?” on page 256 for explanations of te
numbers.

• <iterations> specifies the number of times to perform a test.

• <channel> may contain only any single channel number on a Remote Signal 
Conditioning Unit. All channels on that RSCU will be tested.

• Returned Value: 

The data type for this returned value is int16.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

DIAGnostic:TEST:REMote:SELFtest?

DIAGnostic:TEST:REMote:SELFtest? (@<ch_list>) executes a self-test on a 
single Remote Signal Conditioning Unit connected through the HP E1539A SCP. An 
example of an RSCU is the HP E1529A Remote Strain Bridge Conditioning unit.

Parameters

Comments • <channel> may contain only any single channel number on a Remote Signal 
Conditioning Unit. All channels on that RSCU will be tested.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

test_num numeric 1 - 5 none

iterations numeric 1 - 32767 none

channel channel list (string) 10000 - 15731 none

Value Meaning Further Action

0 test passed None

1 number of times test 
failed

Error information in FIFO buffer. See 
error codes below.

-1 Couldn’t start 
remote self-test

Query the Error Queue (SYST:ERR?)
See error messages starting on page 40

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 10000 - 15731 none
256 HP E1422 Command Reference  Chapter 6



DIAGnostic

7 
• Returned Value: 

The data type for this returned value is int16.

• Failure Information for +1 return: The FIFO buffer will contain pairs of values. 
The first value will be the test number that failed followed by the failing 
channel number. The following are descriptions of the various tests:
Test 1: This test alternates calibration source and short on all channels.
Expected values are less than ±45mV on channels 0,2,4,6,8,...30
and about 3.2 volts on channels 1,3,5,7,...31.
Test 2: This tests the calibration source setting on all channels.
Expected values are approximately 3.2 volts on all channels.
Test 3: This tests the calibration short setting on all channels.
Expected values are less than ±45mV on all channels.
Test 4: This tests a random channel list and wrap around of the list.
The channel list is channels 12, 7, 21, 14, and 10. The test supplies
8 triggers, so the expected final channel is 21. The voltages on those
channels is expected to be: 3.2, 0.0, 0.0, 3.2, and 3.2 volts respectively. 
If a failure occurs, the channel number is reported -- NOTE that for the
second pass (the wrap) of channels 12, 7, and 21, a failure is logged in
the fifo by adding 32 to the channel number (i.e. if we were testing the
E1529 at channel 10000, and the 7th trigger point had bad data, the failure
would be logged as 10039).
Test 5: This tests the filter settings on each bank (of 8 channels).
The method of this test is to ensure that the approximate rise times
increase as the filters are changed from 100 Hz to 10 Hz and then to 2 Hz.
The list of possible error messages is shown below (NOTE that the 1xx
prefix to the channel number denotes the first three digits that uniquely
identify which E1529 is to be tested -- 100, 101, 108, 109, etc.):
     

1xx45 -- Channel 0: 10 Hz rise time not at least 2x that of 100 Hz.
1xx46 -- Channel 8: 10 Hz rise time not at least 2x that of 100 Hz.
1xx47 -- Channel 16: 10 Hz rise time not at least 2x that of 100 Hz.
1xx48 -- Channel 24: 10 Hz rise time not at least 2x that of 100 Hz.
     
1xx50 -- Channel 0: 2 Hz rise time not at least 5x that of 100 Hz.
1xx51 -- Channel 8: 2 Hz rise time not at least 5x that of 100 Hz.
1xx52 -- Channel 16: 2 Hz rise time not at least 5x that of 100 Hz.
1xx53 -- Channel 24: 2 Hz rise time not at least 5x that of 100 Hz.
     

Value Meaning Further Action

0 Self-test OK None

≥1 Error during
remote self-test

Test number of first failure. See 
comments for test information in FIFO.

-1 Couldn’t start 
remote self-test

Query the Error Queue (SYST:ERR?)
See error messages starting on page 40
HP E1422 Command Reference  257Chapter 6



DIAGnostic
1xx55 -- Channel 0: 2 Hz rise time not at least 2x that of 10 Hz.
1xx56 -- Channel 8: 2 Hz rise time not at least 2x that of 10 Hz.
1xx57 -- Channel 16: 2 Hz rise time not at least 2x that of 10 Hz.
1xx58 -- Channel 24: 2 Hz rise time not at least 2x that of 10 Hz.
     
The following errors are not likely to occur, but are possible:
1xx32 -- Channel 0 100 Hz rise time test took too long.
1xx33 -- Channel 8 100 Hz rise time test took too long.
1xx34 -- Channel 16 100 Hz rise time test took too long.
1xx35 -- Channel 24 100 Hz rise time test took too long.
1xx36 -- Channel 0 10 Hz rise time test took too long.
1xx37 -- Channel 8 10 Hz rise time test took too long.
1xx38 -- Channel 16 10 Hz rise time test took too long.
1xx39 -- Channel 24 10 Hz rise time test took too long.
1xx40 -- Channel 0 2 Hz rise time test took too long.
1xx41 -- Channel 8 2 Hz rise time test took too long.
1xx42 -- Channel 16 2 Hz rise time test took too long.
1xx43 -- Channel 24 2 Hz rise time test took too long.

• Failure Information for -1 return, Probable causes:

a. Unable to communicate with HP E1529A (is cable connected?)
b. Invalid channel number or multiple channels specified
c. Not enough memory to allocate internal arrays to hold data
d. HP E1422A is currently performing a calibration operation.
e. HP E1422A is currently performing a measurement operation.

• Related Commands: *TST?, *CAL?, CAL:REMote?, SYST:ERR?

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage DIAG:REM:TEST? (@10000:10900) self-test 4 RSCs at chs 00, 01, 08, and 09

DIAGnostic:VERSion?

DIAGnostic:VERSion? returns the version of the firmware currently loaded into 
Flash Memory. The version information includes manufacturer, model, serial 
number, firmware version and date.

Comments • Returned Value:  Examples of the response string format:
HEWLETT-PACKARD,E1422,US34000478,A.04.00,Thu Aug 5 9:38:07 MDT 1994

• The data type is string. 

• Use VXIplug&play function: hpe1422_revision_query(...)

Usage DIAG:VERS? Returns version string as shown above
258 HP E1422 Command Reference  Chapter 6



FETCh?

 on 
 

FETCh?

Subsystem Syntax FETCh? returns readings stored in VME memory. 

Comments • This command is only available in systems using an HP E1405B or  HP E1406A 
command module.

• FETCH? does not alter the readings stored in VME memory. Only the *RST or 
INIT… commands will clear the readings in VME memory. 

• The format of readings returned is set using the FORMat[:DATA] command.

• Returned Value: REAL,32, REAL,64, and PACK,64, readings are returned in 
the IEEE-488.2-1987 Definite Length Arbitrary Block Data format. This data 
return format is explained in “Arbitrary Block Program and Response Data”
page 205. For REAL,32, readings are 4 bytes in length. For REAL 64, and
PACK, 64, readings are 8 bytes in length.

• PACKed,64 returns the same values as REAL,64  except for Not-a-Number 
(NaN), IEEE +INF and IEEE -INF. The NaN, IEEE +INF and IEEE -INF values 
returned by PACKed,64 are in a form compatible with HP Workstation BASIC 
and HP BASIC/UX.  Refer to the FORMat command for the actual values for 
NaN, +INF, and -INF.

• ASCii is the default format.

• ASCII readings are returned in the form ±1.234567E±123. For example 13.325 
volts would be +1.3325000E+001. Each reading is followed by a comma (,). A 
line feed (LF) and End-Or-Identify (EOI) follow the last reading.

• Related Commands: MEMory Subsystem, FORMat[:DATA]

• *RST Condition: MEMORY:VME:ADDRESS 240000; 
MEMORY:VME:STATE OFF; MEMORY:VME:SIZE 0
HP E1422 Command Reference  259Chapter 6



FETCh?
Use Sequence MEM:VME:ADDR #H300000
MEM:VME:SIZE #H100000 1M byte or 262144 readings 
MEM:VME:STAT ON 
°
°(set up E1422 for scanning)
°
TRIG:SOUR IMM let unit trigger on INIT
INIT program execution remains here until 

VME memory is full or the HP E1422 has 
stopped taking readings

FORM REAL,64 affects only the return of data
FETCH?

Note When using the MEM subsystem, the module must be triggered before 
executing the INIT command (as shown above) unless you are using an 
external trigger (EXT trigger). When using EXT trigger, the trigger can 
occur at any time.
260 HP E1422 Command Reference  Chapter 6



FORMat

ram 
ngth 
s 
FORMat

The FORMat subsystem provides commands to set and query the response data 
format of readings returned using the [SENSe:]DATA:FIFO:…? commands.

Subsystem Syntax FORMat
[:DATA]  <format>[,<size>]
[:DATA]?

FORMat[:DATA]

FORMat[:DATA]  <format>[,<size>] sets the format for data returned using the 
[SENSe:]DATA:FIFO:…?, [SENSe:]DATA:CVTable, and FETCh? commands.

Parameters

Comments • The REAL format is IEEE-754 Floating Point representation.

• REAL, 32 provides the highest data transfer performance since no format 
conversion step is placed between reading and returning the data. The default 
size for the REAL format is 32 bits. Also see DIAG:IEEE command.

• PACKed, 64 returns the same values as REAL, 64  except for Not-a-Number 
(NaN), IEEE +INF and IEEE -INF. The NaN, IEEE +INF and IEEE -INF values 
returned by PACKed,64 are in a form compatible with HP Workstation BASIC 
and HP BASIC/UX (see table on following page).

• REAL 32, REAL 64, and PACK 64, readings are returned in the 
IEEE-488.2-1987 Arbitrary Block Data format. The Block Data may be either 
Definite Length or Indefinite Length depending on the data query command 
executed. These data return formats are explained in “Arbitrary Block Prog
and Response Data” on page 205. For REAL 32, readings are 4 bytes in le
(data type is float32 array). For REAL 64, and PACK, 64, readings are 8 byte
in length (data type is float64 array).

• ASCii is the default format.  ASCII readings are returned in the form 
±1.234567E±123. For example 13.325 volts would be +1.3325000E+001. Each 
reading is followed by a comma (,). A line feed (LF) and End-Or-Identify (EOI) 
follow the last reading (data type is string array).

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

format discrete (string) REAL | ASCii | PACKed none

size numeric for ASCii, 7
for REAL, 32 | 64
for PACKed, 64

none
HP E1422 Command Reference  261Chapter 6



FORMat
Note *TST? leaves the instrument in its power-on reset state. This means that the 
ASC,7 data format is set even if you had it set to something else before 
executing *TST?. If you need to read the FIFO for test information, set the 
format after *TST? and before reading the FIFO.

• Related Commands: [SENSe:]DATA:FIFO:…?, [SENSe:]DATA:CVTable?, 
MEMory subsystem, and FETCh?, Also see how DIAG:IEEE can modify 
REAL,32 returned values.

• *RST Condition: ASCII, 7

• After *RST/Power-on, each channel location in the CVT contains the IEEE-754 
value "Not-a-number" (NaN).   Channel readings which are a positive 
overvoltage return IEEE +INF and a negative overvoltage return IEEE -INF.  
The NaN,  +INF, and  -INF values for each format are shown in the following 
table.

Table 6-1. Data Formats

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage FORMAT  REAL Set format to IEEE 32-bit Floating Point
FORM  REAL, 64 Set format to IEEE 64-bit Floating Point
FORMAT  ASCII, 7 Set format to 7-bit ASCII

Format IEEE Term Value Meaning

ASCii +INF +9.9E37 Positive Overload

-INF -9.9E37 Negative Overload

NaN +9.91E37 No Reading

REAL,32 +INF 7F80000016 Positive Overload

-INF FF80000016 Negative Overload

NaN 7FFFFFFF16 No Reading

REAL,64 +INF 7FF000...0016 Positive Overload

-INF FFF000..0016 Negative Overload

NaN 7FFFFF...FF16 No Reading

PACKed,64 +INF 47D2 9EAD 3677 AF6F16 (+9.0e3710) Positive Overload

-INF C7D2 9EAD 3677 AF6F16 (-9.0e3710) Negative Overload

NaN 47D2 A37D CED4 614316 (+9.91e3710) No Reading
262 HP E1422 Command Reference  Chapter 6



FORMat
FORMat[:DATA]?

FORMat[:DATA]? returns the currently set response data format for readings.

Comments • Returned Value: Returns REAL, +32 | REAL, +64 | PACK, +64 | ASC, +7. 
The data type is string, int16.

• Related Commands: FORMAT

• *RST Condition: ASCII, 7

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage FORMAT? Returns REAL, +32 | REAL, +64 | PACK, 
+64 | ASC, +7
HP E1422 Command Reference  263Chapter 6



INITiate
INITiate

The INITiate command subsystem moves the HP E1422 from the Trigger Idle State 
to the Waiting For Trigger State. When initiated, the instrument is ready to receive 
one (:IMMediate) or more (depending on TRIG:COUNT) trigger events. On each 
trigger, the module will perform one control cycle which includes reading analog and 
digital input channels (Input Phase), executing all defined algorithms (Calculate 
Phase), and updating output channels (Output Phase). See the TRIGger subsystem to 
specify the trigger source and count.

Subsystem Syntax INITiate
[:IMMediate]

INITiate[:IMMediate]

INITiate[:IMMediate] changes the trigger system from the Idle state to the Wait For 
Trigger state. When triggered, one or more (depending on TRIGger:COUNt) trigger 
cycles occur and the instrument returns to the Trigger Idle state.

Comments • INIT:IMM clears the FIFO and Current Value Table.

• If a trigger event is received before the instrument is Initiated, a -211 "Trigger 
ignored" error is generated.

• If another trigger event is received before the instrument has completed the 
current trigger cycle (measurement scan), the Questionable Data Status bit 9 is 
set and a +3012 "Trigger too fast" error is generated.

• Sending INIT while the system is still in the Wait for Trigger state (already 
INITiated) will cause an error -213,"Init ignored".

• Sending the ABORt command send the trigger system to the Trigger Idle state 
when the current input-calculate-output cycle is completed.

• If updates are pending, they are made prior to beginning the Input phase.

• When Accepted: Not while INITiated

• Related Commands: ABORt, CONFigure, TRIGger

• *RST Condition: Trigger system is in the Idle state.

• Use VXIplug&play function: hpe1422_initImm(...)

Usage INIT Both versions same function
INITIATE:IMMEDIATE
264 HP E1422 Command Reference  Chapter 6



INPut
INPut 

The INPut subsystem controls configuration of programmable input Signal 
Conditioning Plug-Ons (SCPs). 

Subsystem Syntax INPut
:FILTer

[:LPASs]
:FREQuency  <cutoff_freq>,(@<ch_list>)
:FREQuency?  (@<channel>)
[:STATe]  1 | 0 | ON | OFF,(@<channel>)
[:STATe]? (@<channel>)

:GAIN <chan_gain>,(@<ch_list>)
:GAIN? (@<channel>)
:LOW <wvolt_type>,(@<ch_list>)
:LOW?  (@<channel>)
:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)

INPut:FILTer[:LPASs]:FREQuency

INPut:FILTer[:LPASs]:FREQuency  <cutoff_freq>,(@<ch_list>) sets the cutoff 
frequency of the filter on the specified channels.

Parameters

Comments • cutoff_freq may be specified in killoHertz (khz). A programmable Filter in either 
an SCP or a Remote Signal Conditioning unit (RSC) has a choice of several 
discrete cutoff frequencies. The cutoff frequency set will be the one closest to 
the value specified by cutoff_freq.

• Sending MAX for the cutoff_freq selects the SCP or RSC’s highest cutoff 
frequency. Sending MIN for the cutoff_freq selects the SCP or RSC’s lowest 
cutoff frequency. To disable filtering (the "pass through" mode), execute the 
INP:FILT:STATE OFF command.

• Sending a value greater than the SCP’s highest cutoff frequency or less than the 
SCP’s lowest cutoff frequency generates a -222 "Data out of range" error.

• When Accepted: Not while INITiated

• Related Commands: INP:FILT:FREQ?, INP:FILT:STAT ON | OFF

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

cutoff_freq numeric (float32)
(string)

see comment |
MIN | MAX

Hz

ch_list channel list (string) 100 - 15731 none
HP E1422 Command Reference  265Chapter 6



INPut
• *RST Condition: generally set to MIN. The HP E1529A is set to 10Hz.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage INP:FILT:FREQ  100,(@100:119) Set cutoff frequency of 100 Hz for first 20 
channels

INPUT:FILTER:FREQ  2,(@15622) Set cutoff frequency of 2 Hz for RSC 
channel 5622

INPut:FILTer[:LPASs]:FREQuency?

INPut:FILTer[:LPASs]:FREQuency?  (@<channel>) returns the cutoff frequency 
currently set for channel. Non-programmable SCP channels may be queried to 
determine their fixed cutoff frequency. If the channel is not on an input SCP, the 
query will return zero.

Parameters

Comments • channel must specify a single channel only.

• This command is for programmable filter SCPs only.

• Returned Value: Numeric value of Hz as set by the INP:FILT:FREQ command. 
The data type is float32.

• When Accepted: Not while INITiated

• Related Commands: INP:FILT:LPAS:FREQ, INP:FILT:STATE

• *RST Condition: generally set to MIN. The HP E1529A is set to 10Hz.

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage INPUT:FILTER:LPASS:FREQUENCY?  (@155)     Check cutoff freq on channel 55
INP:FILT:FREQ?  (@10024) Check cutoff freq on RSC channel 0024

INPut:FILTer[:LPASs][:STATe]

INPut:FILTer[:LPASs][:STATe]  <enable>,(@<ch_list>) enables or disables a 
programmable filter SCP or RSC channel. When disabled (enable=OFF), these 
channels are in their "pass through" mode and provide no filtering. When re-enabled 
(enable=ON), the SCP channel reverts to its previously programmed setting.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 15731 none
266 HP E1422 Command Reference  Chapter 6



INPut
Parameters

Comments • If the SCP has not yet been programmed, ON enables the SCP’s default cutoff 
frequency.

• When Accepted: Not while INITiated

• *RST Condition: ON

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage INPUT:FILTER:STATE  ON,(@115,117) Channels 115 and 117 return to 
previously set (or default) cutoff 
frequency

INP:FILT  OFF,(@10000:1131) Set RSC channels 0000-0131 to 
"pass-through" state

INPut:FILTer[:LPASs][:STATe]?

INPut:FILTer[LPASs][:STATe]?  (@<channel>) returns the currently set state of 
filtering for the specified channel.  If the channel is not on an input SCP or RSC, the 
query will return zero.

Parameters

Comments • Returned Value: Numeric value either 0 (off or "pass-through") or 1 (on). The 
data type is int16.

• channel must specify a single channel only.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage INPUT:FILTER:LPASS:STATE?  (@115) Enter statement returns either 0 or 1
INP:FILT?  (@12424) check filter cut-off on RSC channel 2424

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 100 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 15731 none
HP E1422 Command Reference  267Chapter 6



INPut

 
volt 
INPut:GAIN

INPut:GAIN  <gain>,(@<ch_list>) sets the channel gain on programmable amplifier 
SCP or RSCU.

Note An important thing to understand about input amplifier SCPs and RSCUs is 
that given a fixed input value at a channel, changes in channel gain do not 
change the value returned from that channel. The DSP chip (Digital Signal 
Processor) keeps track of SCP gain and A/D range amplifier settings, and 
"calculates" a value that reflects the signal level at the input terminal. The 
only time this in not true is when the SCP gain chosen would cause the 
output of the SCP amplifier to be too great for the selected A/D range. As 
an example; with SCP gain set to 64, an input signal greater than ±0.25
volts would cause an over-range reading even with the A/D set to its 16 
range.

Parameters

Comments • A programmable amplifier SCPor RSC has a choice of several discrete gain 
settings. The gain set will be the one closest to the value specified by gain. Refer 
to your SCP manual for specific information on the SCP you are programming. 
Sending MAX will program the highest gain available with the SCP installed. 
Sending MIN will program the lowest gain.

• Sending a value for gain that is greater than the highest or less than the lowest 
setting allowable for the SCP will generate a -222 "Data out of range" error.

• When Accepted: Not while INITiated

• Related Commands: INP:GAIN?

• *RST Condition: gain set to MIN

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage INP:GAIN  8,(@100:119) Set gain of 8 for first 20 channels
INPUT:GAIN  64,(@155) Set gain of 64 for SCP channel 55

INPut:GAIN?

INPut:GAIN?  (@<channel>) returns the gain currently set for channel. If the 
channel is not on an input SCP, the query will return zero.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

gain numeric (float32)
discrete (string)

see comment | 
MIN | MAX

none

ch_list channel list (string) 100 - 163 none 
268 HP E1422 Command Reference  Chapter 6



INPut

 the 
Parameters

Comments • channel must specify a single channel only.

• If the channel specified does not have a programmable amplifier, INP:GAIN? 
will return the nominal as-designed gain for that channel.

• Returned Value: Numeric value as set by the INP:GAIN command. The data 
type is float32.

• When Accepted: Not while INITiated

• Related Commands: INP:GAIN

• *RST Condition: gain set to 1

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage INPUT:GAIN?  (@105) Check gain on channel 5
INP:GAIN?  (@100) Check gain on channel 0

INPut:LOW

INPut:LOW  <wvolt_type>,(@<ch_list>) controls the connection of input LO at a 
Strain Bridge SCP channel specified by <ch_list>. LO can be connected to the 
Wagner Voltage tap for quarter or half bridge configurations, or disconnected for full 
bridges. Note the HP E1529A’s Wagner Voltage connection is only controlled by
command “[SENSe:]STRain:BRIDge[:TYPE]” on page 321.

Parameters

Comments • Related Commands: INP:LOW?

• *RST Condition: INP:LOW FLOAT (all Option 21 channels)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage INP:LOW WVOL (@100:103,116:119) connect LO of channels 0 through 3 and 
16 through 19 to Wagner Ground.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 163 none 

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

wvolt_type discrete (string) FLOat | WVOLtage none

ch_list channel list (string) 100 - 163 none
HP E1422 Command Reference  269Chapter 6



INPut
INPut:LOW?

INPut:LOW?  (@<channel>) returns the LO input configuration for the channel 
specified by <channel>. This command is for strain SCPs only, not for HP E1529A.

Parameters

Comments • channel must specify a single channel only.

• Returned Value: Returns FLO or WV. The data type is string.

• Related Commands: INP:LOW

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage INP:LOW? (@103) enter statement will return either FLO or 
WV for channel 3

INPut:POLarity

INPut:POLarity <mode>,<ch_list> sets logical input polarity on a digital SCP 
channel.

Parameters

Comments • If the channels specified are on an SCP that doesn’t support this function, an 
error will be generated. See your SCP’s User’s Manual to determine its 
capabilities.

• Related Commands: for output sense; SOURce:PULSe:POLarity

• *RST Condition: INP:POL NORM for all digital SCP channels.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage INP:POL INV,(@140:143) invert first 4 channels on SCP at SCP 
position 5. Channels 40 through 43 

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

mode discrete (string) NORMal | INVerted none

ch_list string 100 - 163 none
270 HP E1422 Command Reference  Chapter 6



INPut
INPut:POLarity?

INPut:POLarity? <channel> returns the logical input polarity on a digital SCP 
channel. 

Parameters

Comments • <channel> must specify a single channel.

• If the channel specified is on an SCP that doesn’t support this function, an error 
will be generated. See your SCP’s User’s Manual to determine its capabilities.

• Returned Value: returns "NORM" or "INV". The type is string.

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none
HP E1422 Command Reference  271Chapter 6



MEASure

s also 
. The 
IFO.

e 

 

MEASure

The MEASure susbystem provides convenient setup-and-execution for some 
pre-measurement strain operations.

Subsystem Syntax MEASure
:VOLTage

:EXCitation (@<ch_list>)
:UNSTrained (@<ch_list>)

MEASure:VOLTage:EXCitation?

MEASure:VOLTage:EXCitation?  (@<ch_list>) This command automatically 
configures the HP E1422A to measure the bridge excitation voltage at each channel 
in <ch_list> and starts a measurement scan. 32 measurements are averaged for each 
channel, and the averaged values are stored internally for later use by the strain 
Engineering Unit Conversion process. The average of each channel’s reading i
sent to the FIFO buffer in case you want them for your own conversion process
command returns a single value which is the number of readings sent to the F

Note The maximum excitation voltage the HP E1422A can sense through th
HP E1529A’s excitation sense path is 16 volts (±8VDC centered about the 
Gnd terminal). If you supply higher excitation voltage through the 
HP E1529A, don’t connect the excitation sense terminals.

Note that this command executes a measurement scan without executing any
algorithms that might be defined. 

The sequence of individual commands to approximate this operation is

TRIGger :COUNt 1 one time through scan list
ROUTe:SEQuence:DEFine  (@<ch_list>) input the list of channels to measure
SENSe:FUNCtion:VOLTage [<range>,](@<ch_list>)               set measurement function to volts
SENSe:STRain:EXCitation:STATE ON,(@<ch_list>)             turn on excitation supplies
SENSe:STRain:CONNect EXCite,(@<ch_list>)    connect channel sense to excitation

    supply
INIT start measurement scan
SENSe:DATA:FIFO:COUNT? query for number of readings in FIFO
enter statement here to return FIFO reading <count>
SENSe:DATA:FIFO:PART? <count> read excitation values from the FIFO
enter statement to for block data from FIFO

next the excitation voltage values acquired above must be sent back to the HP E1422 by 
executing the following command once for each channel in <ch_list> above:

SENSe:STRain:EXCitation <voltage_value>,(@channel)
272 HP E1422 Command Reference  Chapter 6



MEASure

 

Notes 1. Unlike the MEAS:VOLT:EXC? command, the individual command sequence 
above cannot keep defined algorithms from running at INIT. Since algorithms 
can place values into the FIFO buffer, you will have to determine which FIFO 
values are the excitation voltages. 

2. Remember that the MEAS:VOLT:EXC? command also provides the average 
of 32 measurements for each excitation value.

Parameters

Comments • This command is only for use on channels measured with the HP E1529A. If 
executed on channels connected to other strain SCPs, a 3007 "Invalid signal 
conditioning plug-on" error message will be generated

• This comand executes a measurement scan without running defined algorithms. 
This is to keep algorithms from placing values in the FIFO buffer.

• The measurement sample interval is 392µS

• Filter settings and states are not changed by this command.

• After completing the measurements, the instrument is re-configured to the same 
settings that existed before the command was executed.

• When Accepted: Not while INITiated

• Related Commands: SENSe:STRain:EXCitation, MEAS:VOLT:UNST?

• *RST Condition: channel excitation voltage values are not affected by *RST. 
However, *RST changes the function for all analog input channels to Voltage. 
When you change a strain channel back to the strain function with a 
SENS:FUNC:STRAIN... command, the excitation voltage values for these 
channel will still be in effect. Of course loss of power will cause the excitation 
values to be lost.

• Returned Value: numeric, number of channel values in FIFO. The type is int16.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage MEAS:VOLT:EXC? (@10000:10931) determine excitation voltage on 128 
strain channels through HP E1539As in 
SCP positons 0 and 1

SENS:DATA:FIFO:RESET As in most cases, since the values have 
been sent to the strain EU conversion, we 
won’t need to see the individual excitation
values.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list channel list (string) 10000 - 15731 none
HP E1422 Command Reference  273Chapter 6



MEASure

buffer 
he 

 

nce 
ine 
MEASure:VOLTage:UNSTrained?

MEASure:VOLTage:UNSTrained?  (@<ch_list>) This command automatically 
configures the HP E1422A to measure the bridge output voltage at each channel in 
<ch_list> and initiates a measurement scan. 32 measurements are averaged for  each 
channel, and the averaged values are stored for later use by the strain Engineering 
Units conversion process on these channels. The strain bridges must be unstrained 
during this time. The average of each channel’s reading is also sent to the FIFO 
in case you want to view them. The command returns a single value which is t
number of readings sent to the FIFO.

Note that this command executes a measurement scan without executing any
algorithms that might be defined. 

The sequence of individual commands to approximate this operation is

TRIGger :COUNt 1 one time through scan list
ROUTe:SEQuence:DEFine  (@<ch_list>) input the list of channels to measure
SENSe:FUNCtion:VOLTage [<range>,](@<ch_list>)               set measurement function to volts
SENSe:STRain:EXCitation:STATE ON,(@<ch_list>)             turn on excitation supplies
SENSe:STRain:CONNect BRIDge,(@<ch_list>)    connect channel sense to bridge output
INIT start measurement scan
SENSe:DATA:FIFO:COUNT? query for number of readings in FIFO
enter statement here to return FIFO reading <count>
SENSe:DATA:FIFO:PART? <count> read unstrained voltage readings from 

the FIFO buffer
enter statement to for block data from FIFO

next the unstrained voltage values acquired above must be sent back to the HP E1422 
by executing the following command once for each channel in <ch_list> above:

SENSe:STRain:UNSTrained <voltage_value>,(@channel)

Notes 1. Unlike the MEAS:VOLT:UNST? command, the individual command 
sequence above cannot keep defined algorithms from running at INIT. Si
algorithms can place values into the FIFO buffer, you will have to determ
which FIFO values are the excitation voltages. 

2. Remember that the MEAS:VOLT:UNST? command also provides the 
average of 32 measurements for each excitation value.

Parameters

Comments • This command is only for use on channels measured with the HP E1529A. If 
executed on channels connected to other strain SCPs, a 3007 "Invalid signal 
conditioning plug-on" error message will be generated

• This comand executes a measurement scan without running defined algorithms. 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list channel list (string) 10000 - 15731 none
274 HP E1422 Command Reference  Chapter 6



MEASure
This is to keep algorithms from placing values in the FIFO buffer.

• The measurement sample interval is 392µS

• Filter settings and states are not changed by this command.

• Note also that shunt resistor source and state are left as currently programmed.

• After completing the measurements, the instrument is re-configured to the same 
settings that existed before the command was executed.

• When Accepted: Not while INITiated

• Related Commands: SENSe:STRain:EXCitation, MEAS:VOLT:UNST?

• *RST Condition:  channel unstrained values are not affected by *RST. 
However, *RST changes the function for all analog input channels to Voltage. 
When you change a strain channel back to the strain function with a 
SENS:FUNC:STRAIN... command, the unstrained values for these channel will 
still be in effect. Of course loss of power will cause the unstrained values to be 
lost.

• Returned Value: numeric, number of channel values in FIFO. The type is int16.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage MEAS:VOLT:UNST? (@10000:10931) determine unstrained voltage on 128 
strain channels through HP E1539As in 
SCP positons 0 and 1

SENS:DATA:FIFO:RESET As in most cases, since the values have 
been sent to the strain EU conversion, we 
won’t need to see the individual 
unstrained values.
HP E1422 Command Reference  275Chapter 6



MEMory
MEMory

The MEMory subsystem allows using VME memory as an additional reading storage 
buffer. 

Subsystem Syntax MEMory
:VME

:ADDRess  <A24_address>
:ADDRess?
:SIZE  <mem_size>
:SIZE?
:STATe  1 | 0 | ON | OFF
:STATe?

Note This subsystem is only available in systems using an HP E1405B or  HP E1406A 
command module.

Use Sequence *RST
MEM:VME:ADDR #H300000
MEM:VME:SIZE #H100000 1M byte or 262144 readings 
MEM:VME:STAT ON 
*
 *(set up E1422 for scanning)
 *
TRIG:SOUR IMM let unit trigger on INIT
INIT
*OPC? program execution remains here until 

VME memory is full or the HP E1422 has 
stopped taking readings

FORM REAL,64 affects only the return of data
FETCH? return data from VME memory

Note When using the MEM subsystem, the module must be triggered before executing the 
INIT command (as shown above) unless you are using an external trigger (EXT 
trigger). When using EXT trigger, the trigger can occur at any time.

MEMory:VME:ADDRess

MEMory:VME:ADDRess  <A24_address> sets the A24 address of the VME 
memory card to be used as additional reading storage.
276 HP E1422 Command Reference  Chapter 6



MEMory
Parameters

Comments • This command is only available in systems using an HP E1405B or  HP E1406A 
command module.

• The default (if MEM:VME:ADDR not executed) is 24000016.

• A24_address may be specified in decimal, hex (#H), octal (#Q), or binary (#B).

• Related Commands: MEMory subsystem, FORMat, and FETCH?

• *RST Condition: VME memory address starts at 20000016.  When using an HP 
E1405/6 command module, the first HP E1422 occupies 20000016 - 23FFFF16.

Usage MEM:VME:ADDR  #H400000 Set the address for the VME memory card 
to be used as reading storage

MEMory:VME:ADDRess?

MEMory:VME:ADDRess? returns the address specified for the VME memory card 
used for reading storage.

Comments • Returned Value: numeric. 

• This command is only available in systems using an HP E1405B or  HP E1406A 
command module.

• Related Commands: MEMory subsystem, , FORMat, and FETCH?

Usage MEM:VME:ADDR? Returns the address of the VME memory 
card.

MEMory:VME:SIZE

MEMory:VME:SIZE  <mem_size> Specifies the number of bytes of VME memory 
to allocate for additional reading storage.

Parameters

Comments • This command is only available in systems using an HP E1405B or  HP E1406A 
command module.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

A24_address numeric valid A24 address none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

mem_size numeric to limit of available VME memory none
HP E1422 Command Reference  277Chapter 6



MEMory
• mem_size may be specified in decimal, hex (#H), octal (#Q), or binary(#B).

•  mem_size should be a multiple of four (4) to accommodate 32 bit readings.

• Related Commands: MEMory subsystem, FORMAT, and FETCH?

• *RST Condition: MEM:VME:SIZE 0

Usage MEM:VME:SIZE  32768 Allocate 32 Kbytes of VME memory to 
reading storage  (8192 readings)

MEMory:VME:SIZE?

MEMory:VME:SIZE? returns the amount (in bytes) of VME memory allocated to 
reading storage.

Comments • This command is only available in systems using an HP E1405B or  HP E1406A 
command module.

• Returned Value: Numeric. 

• Related Commands: MEMory subsystem, and FETCH?

Usage MEM:VME:SIZE? Returns the number of bytes allocated to 
reading storage.

MEMory:VME:STATe

MEMory:VME:STATe  <enable> enables or disables use of the VME memory card 
as additional reading storage.

Parameters

Comments • This command is only available in systems using an HP E1405B or  HP E1406A 
command module.

• When the VME memory card is enabled, the INIT command does not terminate 
until data acquisition stops or VME memory is full.

• Related Commands: Memory subsystem, and FETCH?

• *RST Condition: MEM:VME:STAT OFF

Usage MEMORY:VME:STATE  ON enable VME card as reading storage
MEM:VME:STAT  0 Disable VME card as reading storage

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable boolean (uint16) 1 | 0 | ON | OFF none
278 HP E1422 Command Reference  Chapter 6



MEMory
MEMory:VME:STATe?

MEMory:VME:STATe? returned value of 0 indicates that VME reading storage is 
disabled. Returned value of 1 indicates VME memory is enabled.

Comments • This command is only available in systems using an HP E1405B or  HP E1406A 
command module.

• Returned Value: Numeric 1 or 0. data type uint16.  

• Related Commands: MEMory subsystem, and FETCH? 

Usage MEM:VME:STAT? Returns 1 for enabled, 0 for disabled
HP E1422 Command Reference  279Chapter 6



OUTPut
OUTPut

The OUTPut subsystem is involved in programming source SCPs as well as 
controlling the state of VXIbus TTLTRG lines 0 through 7.

Subsystem Syntax OUTPut
:CURRent

:AMPLitude  <amplitude>,(@<ch_list>)
:AMPLitude?  (@<channel>)
[:STATe]  1 | 0 | ON | OFF,(@<ch_list>)
[:STATe]?  (@<channel>)

:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)
:SHUNt  1 | 0 | ON | OFF,(@<ch_list>)
:SHUNt? (@<channel>)

:SOURce INT | EXT,(@<ch_list>)
:SOURce? (@<channel>)

:SHUNt?  (@<channel>)
:TTLTrg

:SOURce  TRIGger | FTRigger | SCPlugon | LIMit
:SOURce?

:TTLTrg<n>
[:STATe]  1 | 0 | ON | OFF
[:STATe]?

:TYPE PASSive | ACTive,(@<ch_list>)
:TYPE? (@<channel>)
:VOLTage

 :AMPLitude <amplitude>,(@<ch_list>)
 :AMPLitude? (@<channel>)
 

OUTPut:CURRent:AMPLitude

OUTPut:CURRent:AMPLitude  <amplitude>,(@<ch_list>) sets the HP E1505 
Current Source SCP channels specified by ch_list to either 488 µA, or 30 µA. This 
current is typically used for four-wire resistance and resistance temperature 
measurements.

Note This command does not set current amplitude on SCPs like the HP E1532 Current 
Output SCP.
280 HP E1422 Command Reference  Chapter 6



OUTPut
Parameters

Comments • Select 488E-6 (or MAX) for measuring resistances of less than 8000 Ohms. 
Select 30E-6 (or MIN) for resistances of 8000 Ohms and above. amplitude may 
be specified in µA (ua).

• For resistance temperature measurements ([SENSe:]FUNCtion:TEMPerature) 
the Current Source SCP must be set as follows:

•  When *CAL? is executed, the current sources are calibrated on the range 
selected at that time.

• When Accepted: Not while INITiated

• Related Commands: *CAL?, OUTP:CURR:AMPL?

• *RST Condition: MIN

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:CURR:AMPL  488ua,(@116:123) Set Current Source SCP at channels 16 
through 23 to 488 µA

OUTP:CURR:AMPL  30E-6,(@105) Set Current Source SCP at channel 5 to 
30 µA

OUTPut:CURRent:AMPLitude?

OUTPut:CURRent:AMPLitude?  (@<channel>) returns the range setting of the 
Current Source SCP channel specified by channel.

Parameters

Comments • channel must specify a single channel only.

• If channel specifies an SCP which is not a Current Source, a +3007, "Invalid 
signal conditioning plug-on" error is generated.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

amplitude numeric (float32) MIN | 30E-6 | MAX | 488E-6 ADC

ch_list channel list (string) 100 - 163 none

MAX (488µA)  for RTD,85 | 92 and THER,2250

MIN (30µA) for THER,5000 | 10000

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 163 none
HP E1422 Command Reference  281Chapter 6



OUTPut
• Returned Value: Numeric value of amplitude set. The data type is float32.

• Related Commands: OUTP:CURR:AMPL

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage OUTP:CURR:AMPLITUDE?  (@163) Check SCP current set for channel 63 
(returns +3.0E-5 or +4.88E-4)

OUTPut:CURRent[:STATe]

OUTPut:CURRent[:STATe] <enable>,(@<ch_list>) enables or disables current 
source on channels specified in <ch_list>.

Parameters

Comments • OUTP:CURR:STAT does not affect a channel’s amplitude setting. A channel 
that has been disabled, when re-enabled sources the same current set by the 
previous OUTP:CURR:AMPL command.

• OUTP:CURR:STAT is most commonly used to turn off excitation current to 
four-wire resistance (and resistance temperature device) circuits during 
execution of CAL:TARE for those channels.

• When Accepted: Not while INITiated

• Related Commands: OUTP:CURR:AMPL, CAL:TARE

• *RST Condition: OUTP:CURR OFF (all channels)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:CURR OFF,(@100,108) turn off current source channels 0 and 8

OUTPut:CURRent[:STATe]?

OUTPut:CURRent[:STATe]?  (@<channel>) returns the state of the Current Source 
SCP channel specified by <channel>. If the channel is not on an HP E1505 Current 
Source SCP, the query will return zero.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 100 - 163 none
282 HP E1422 Command Reference  Chapter 6



OUTPut
Parameters

Comments • channel must specify a single channel only.

• Returned Value: returns 1 for enabled, 0 for disabled. data type is uint16.

• Related Commands: OUTP:CURR:STATE, OUTP:CURR:AMPL

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage OUTP:CURR? (@108) query for state of Current SCP channel 8
execute enter statement here enter query value, either 1 or 0

OUTPut:POLarity

OUTPut:POLarity <select>,(@<ch_list>)  sets the polarity on digital output 
channels in <ch_list>.

Parameters

Comments • If the channels specified do not support this function, an error will be generated.

• Related Commands: INPut:POLarity, OUTPut:POLarity?

• *RST Condition: OUTP:POL NORM for all digital channels

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:POL INV,(@144) invert output logic sense on channel 44

OUTPut:POLarity?

OUTPut:POLarity? (@<channel>) returns the polarity on the digital output channel 
in <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

select discrete (string) NORMal | INVerted none

ch_list string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none
HP E1422 Command Reference  283Chapter 6



OUTPut
Comments • Channel must specify a single channel

• Returned Value: returns one of NORM or INV. The type is string.

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

OUTPut:SHUNt

OUTPut:SHUNt  <enable>,(@<ch_list>) adds shunt resistance to one leg of bridge 
on Strain Bridge Completion SCPs and the HP E1529A Remote Strain Bridge unit. 
This can be used for diagnostic purposes and characterization of bridge response.

Parameters

Comments • If ch_list specifies a non strain SCP, a 3007 "Invalid signal conditioning plug-on" 
error is generated.

• Only one channel on any one HP E1529A can be specified in <ch_list>. This is 
because a single resistor is used to shunt each of an HP E1529As 32 channels.  
The <ch_list> may specify one channel on each of several HP E1529As.

• When Accepted: Not while INITiated

• Related Commands: [SENSe:]FUNCtion:STRain…, [SENSe:]STRain…

• *RST Condition: OUTP:SHUNT  0 on all Strain SCP and RSC channels

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:SHUNT  1,(@116:119) add shunt resistance at channels 16 
through 19

OUTPut:SHUNt?

OUTPut:SHUNt?  (@<channel>) returns the status of the shunt resistance on the 
specified Strain SCP or RSC channel.

Parameters

Comments • channel must specify a single channel only.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable boolean (uint16) 0 | 1 | ON | OFF none

ch_list channel list (string) 100 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 15731 none
284 HP E1422 Command Reference  Chapter 6



OUTPut
• If channel specifies a non strain SCP or RSC, a 3007 "Invalid signal conditioning 
plug-on" error is generated.

• Returned Value: Returns 1 or 0. The data type is uint16. 

• Related Commands: OUTP:SHUNT

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage OUTPUT:SHUNt?  (@116) Check status of shunt resistance on 
channel 16

OUTPUT:SHUNt?  (@10124) Check status of shunt resistance on 
HP E1529A channel 0124

OUTPut:SHUNt:SOURce

OUTPut:SHUNt:SOURce  <select>,(@<ch_list>) selects the source of the bridge 
shunt resistance for a HP E1529A Remote Strain Bridge Conditioning unit. The 
HP E1529A has an internal shunt resistor, and also supports an external user supplied 
resistor.

Parameters

Comments • If ch_list specifies a non HP E1529A strain SCP, a 3007 "Invalid signal 
conditioning plug-on" error is generated.

• Only one channel on each HP E1529A needs to be specified since a single 
resistor is used for all channels in the module.

• When Accepted: Not while INITiated

• Related Commands: OUTPut:SHUNt…, SENSe:FUNCtion:STRain…, 
[SENSe:]STRain…

• *RST Condition: OUTP:SHUNT:SOURCE INT on all HP E1529A channels

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:SHUNT:SOUR EXT,(@10000,10800)   select user supplied shunt resistor on 
HP E1529s connected to channels 
0,1,8,and 9

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

select discrete (string) INTernal | EXTernal none

ch_list channel list (string) 10000 - 15731 none
HP E1422 Command Reference  285Chapter 6



OUTPut
OUTPut:SHUNt:SOURce?

OUTPut:SHUNt:SOURce?  (@<channel>) returns the source of the shunt 
resistance on the specified HP E1529A Strain channel.

Parameters

Comments • channel must specify a single channel only, and since there is a single shunt 
resistor for all channels on an HP E1529A, it can be any channel on the  
HP E1529A.

• If channel specifies a non HP E1529A channel, a 3007 "Invalid signal 
conditioning plug-on" error is generated.

• Returned Value: Returns "INT" or "EXT". The data type is string. 

• Related Commands: OUTP:SHUNT:SOUR

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage OUTPUT:SHUNT:SOURCE?  (@11600) Check source of shunt resistance on 
HP E1529A connected to channel 16

OUTPut:TTLTrg:SOURce

OUTPut:TTLTrg:SOURce <trig_source> selects the internal source of the trigger 
event that will operate the VXIbus TTLTRG lines.

Parameters

Comments • The following table explains the possible choices.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 10000 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

trig_source discrete (string) ALGorithm | TRIGger | FTRigger | SCPlugon none

ALGorithm Generated by the Algorithm Language function 
"interrupt()"

FTRigger Generated on the First Trigger of a multiple "counted 
scan" (set by TRIG:COUNT <trig_count>)

SCPlugon Generated by a Signal Conditioning Plug-on (SCP). Do 
not use this when Sample-and-Hold SCPs are installed. 

TRIGger Generated every time a scan is triggered (see 
TRIG:SOUR <trig_source>)
286 HP E1422 Command Reference  Chapter 6



OUTPut
• FTRigger (First TRigger) is used to generate a single TTLTRG output when 
repeated triggers are being used to make multiple executions of the enabled 
algorithms. The TTLTRG line will go low (asserted) at the first trigger event 
and stay low through subsequent triggers until the trigger count (as set by 
TRIG:COUNT) is exhausted. At this point the TTLTRG line will return to its 
high state (de-asserted). This feature can be used to signal when the HP E1422 
has started running its control algorithms.

• Related Commands: OUTP:TTLT<n>[:STATE], OUTP:TTLT:SOUR?, 
TRIG:SOUR, TRIG:COUNT

• *RST Condition: OUTP:TTLT:SOUR TRIG

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:TTLT:SOUR TRIG toggle TTLTRG line every time module is 
triggered (use to trigger other HP 
E1422s)

OUTPut:TTLTrg:SOURce?

OUTPut:TTLTrg:SOURce? returns the current setting for the TTLTRG line source.

Comments • Returned Value: Discrete, one of; TRIG, FTR, or SCP. The data type is string.

• Related Commands: OUTP:TTLT:SOUR

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage OUTP:TTLT:SOUR? enter statement will return on of FTR, 
SCP, or TRIG

OUTPut:TTLTrg<n>[:STATe]

OUTPut:TTLTrg<n>:STATe  <ttltrg_cntrl> specifies which VXIbus TTLTRG line 
is enabled to source a trigger signal when the module is triggered. TTLTrg<n> can 
specify line 0 through 7. For example, …:TTLTRG4, or TTLT4 for VXIbus 
TTLTRG line 4.

Parameters

Comments • Only one VXIbus TTLTRG line can be enabled simultaneously.

• When Accepted: Not while INITiated

• Related Commands: ABORT, INIT…, TRIG…

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ttltrg_cntrl boolean (uint16) 1 | 0 | ON | OFF none
HP E1422 Command Reference  287Chapter 6



OUTPut
• *RST Condition: OUTPut:TTLTrg<0 through 7> OFF

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:TTLT2  ON Enable TTLTRG2 line to source a trigger
OUTPUT:TTLTRG7:STATE  ON Enable TTLTRG7 line to source a trigger

OUTPut:TTLTrg<n>[:STATe]?

OUTPut:TTLTrg<n>[:STATe]? returns the current state for TTLTRG line <n>.

Comments • Returned Value: Returns 1 or 0. The data type is int16. 

• Related Commands: OUTP:TTLT<n>

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage OUTP:TTLT2? See if TTLTRG2 line is enabled (returns 1 
or 0)

OUTPUT:TTLTRG7:STATE? See if TTLTRG7 line is enabled

OUTPut:TYPE

OUTPut:TYPE <select>,(@<ch_list>) sets the output drive characteristic for digital 
SCPs with programmable channels.

Parameters

Comments • If the channels specified are on an SCP that doesn’t support this function an error 
will be generated. See your SCP’s User’s Manual to determine its capabilities.

• PASSive configures the digital channel/bit to be passive (resistor) pull-up to 
allow you to wire-or more than one output together.

• ACTive configures the digital channel/bit to both source and sink current.

• Related Commands: SOURce:PULSe:POLarity, OUTPut:TYPE?

• *RST Condition: OUTP:TYPE ACTIVE (for TTL compatibility)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:TYPE PASS,(@140:143) make channels 40 to 43 passive pull-up

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

select discrete (string) PASSive | ACTive seconds

ch_list string 100 - 163 none
288 HP E1422 Command Reference  Chapter 6



OUTPut
OUTPut:TYPE?

OUTPut:TYPE? <channel>  returns the output drive characteristic for a digital 
channel.

Parameters

Comments • Channel must specify a single channel.

• If the channel specified is not on a digital SCP, an error will be generated.

• Returned Value: returns PASS or ACT. The type is string.

• *RST Condition: returns ACT

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

OUTPut:VOLTage:AMPLitude

OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>) sets the excitation 
voltage on programmable Strain Bridge Completion SCPs pointed to by <ch_list> 
(the HP E1511 for example).

Note This command is not used to set output voltage on SCPs like the HP E1531 
Voltage Output SCP.

Parameters

Comments • To turn off excitation voltage (when using external voltage source) program 
amplitude to 0.

• Related Commands: OUTP:VOLT:AMPL?

• *RST Condition: MIN (0) for HP E1511A

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage OUTP:VOLT:AMPL 5,(@116:119) set excitation voltage for channels 16 
through 19 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

amplitude numeric (float32) MIN | 0 |1 | 2 | 5 | 10 | MAX none

ch_list channel list (string) 100 - 163 none
HP E1422 Command Reference  289Chapter 6



OUTPut
OUTPut:VOLTage:AMPLitude?

OUTPut:VOLTage:AMPLitude? (@<channel>) returns the current setting of 
excitation voltage for the channel specified by <channel>. If the channel is not on an 
HP E1511 SCP, the query will return zero.

Comments • channel must specify a single channel only.

• Returned Value: Numeric, one of 0, 1, 2 ,5, or 10 for HP E1511A SCP, 3.9 for 
non programmable HP E1506/07 SCPs. data type is float32. 

• Related Commands: OUTP:VOLT:AMPL

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage OUTP:VOLT:AMPL? (@103) returns current setting of excitation 
voltage for channel 3
290 HP E1422 Command Reference  Chapter 6



ROUTe

ified 

t 

n 

o the 
r 
thms 

 value 
ROUTe 

The  ROUTe subsystem provides a method to define the sequence of channels in the 
HP E1422A’s Analog Input scan list. Note that any analog input channels spec
in an algorithm definition also affect the contents of this scan list. Queries are 
provided to determine the overall channel list definition including analog outpu
channels as well as digital input and output channels.

Subsystem Syntax ROUTe
:SEQuence

:DEFine (@<ch_list>)
:DEFine?
:POINts?

ROUTe:SEQuence:DEFine

ROUTe:SEQuence:DEFine (@<ch_list>)  adds channels to the analog input sca
list. Channels specified with ROUT:SEQ:DEF will be scanned each time the 
HP E1422 receives a scan trigger. By default, the readings taken will be sent t
Current Value Table (CVT) and FIFO buffer. A special form of channel specifie
allows changing the default data destinations (see comments below). Any algori
you define can also add channels to the analog input scan list.

Parameters

Comments • <ch_list> must contain analog input channels only.

• Multiple occurances of the same channel number in a ROUT:SEQ:DEF 
command generates multiple occurances of that channel in the analog input scan 
list. This is useful when a particular channel needs additional settling time. 
However, a scan list can contain only 32 total channels per E1529A. This means 
that for each E1529A duplicate channel reference in your scan list, some other 
channel on that same E1529A must be left out of the scan.

• When the same channel is referenced both by an algorithm and the 
ROUT:SEQ:DEF command, only a single reference to the channel is added to 
the analog input scan list. For each scan operation, this channel’s measured
is made available to both the algorithm and to the FIFO/CVT.

• Certain analog input SCPs display higher than normal offset and noise figures 
if their channels are scanned just before channels on a Remote Signal 
Conditioning Unit. To avoid any such interaction, you should order your scan 
list so all remote channels (5-digit channel numbers) appear before any on-board 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list channel list (string) 100 - 15731 none
HP E1422 Command Reference  291Chapter 6



ROUTe

 204 
ues 
channels (3-digit channel numbers)

• Controlling Data Destination: The relative form of the SCPI Channel List 
syntax is used to control the destination of data from channels in the scan list. 
For a discussion of the syntax See “Channel List (Relative Form)” on page
The value of the "Data Destination" digit controls the destination of the val
read from the specified channels in the following manner:

Example Channel lists (same applies to On-board channels):
ROUT:SEQ:DEF (@1(10000:10931)) 1st 128 remote Chs sent to CVT
ROUT:SEQ:DEF (@2(10000:10931)) 1st 128 remote Chs sent toFIFO buffer
ROUT:SEQ:DEF (@3(10000:10931)) 1st 128 remote Chs sent to CVT & FIFO
ROUT:SEQ:DEF (@0(10000:10931)) 1st 128 remote Chs discarded

• Relationship between Channel number and CVT location: There is a fixed 
relationship between each possible channel number and the Current Value Table 
location that the channel reading is sent to.

Data Destination Effect on Reading
1 Reading sent to Current Value Table (CVT)

2 Reading sent to FIFO Buffer

3 Reading sent to CVT and FIFO

0 Reading not recorded (neither CVT or FIFO)

On-board channel CVT Addressing (1nn)
SCP_pos X 64 + SCP_chan + 10
= int(nn/8) X 64 + (nn mod 8) + 10

502 Usable Elements

64 Remote Channels
10000-31       10100-31

64 Remote Channels
11600-31       11700-31

8  on-board channels 888

C
V

T 
0-

9
un

av
ai

la
bl

e

64 Remote Channels
10800-31       10900-31

64 Remote Channels
12400-31       12500-31

 on-board channels  on-board channels  on-board channels

SCP position 0 SCP position 1 SCP position 3SCP position 2

64 Remote Channels
13200-31       13300-31

64 Remote Channels
14800-31       14900-31

8

CVT330 CVT394 CVT458

888

64 Remote Channels
14000-31       14100-31

Only 54 Channels
15600-31    15700-21

CVT298 CVT362 CVT426 CVT490

 on-board channels  on-board channels  on-board channels  on-board channels

SCP position 4 SCP position 7SCP position 6SCP position 5

Remote channel CVT Addressing (1nnee)
SCP_pos X 64 + SCP_chan X 32 + Rem_chan + 10

=  int(nn/8) X 64 + (nn mod 8) X 32 + ee + 10

CVT42CVT10 CVT74 CVT106 CVT138 CVT170 CVT234CVT202

CVT266

Figure 6-4. Channel Number vs. CVT Element
292 HP E1422 Command Reference  Chapter 6



ROUTe
• Notice that since there are only 502 CVT elements available for up to 512 
possible remote channel specifiers, these last 10 channels (15722-15731) must 
not be sent to the CVT or an error will be generated. Since the default data 
destination is to BOTH the FIFO and CVT (Data Destination 3), any reference 
in ROUT:SEQ:DEF to the last 10 remote channels must force the data 
destination to FIFO only.

• *RST Condition: To supply the necessary time delay before Digital inputs are 
read, the analog input (AIN) scan list contains two entries for channel 0 
(100).This minimum delay is maintained by replacing these default channels as 
others are defined by algorithms or ROUT:SEQ:DEF. The three other lists 
contain no channels.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage define mix of Remote and on-board channels.  First 128 Remote channels default to 
FIFO and CVT, next 64 Remote channels are directed to FIFO only, and last 8 On-board 
channels default to FIFO and CVT.

ROUT:SEQ:DEF (@10000:10931,2(11600:11731),124:131)

ROUTe:SEQuence:DEFine?

ROUTe:SEQuence:DEFine? <type>  returns the sequence of channels defined in 
the scan list.

Parameters

Comments • The channel list contents and sequence are determined primarily by channel 
references in the ROUT:SEQ:DEF command and in any algorithms currently 
defined. The SENS:REF:CHANNELS, and SENS:CHAN:SETTLING 
commands also effect the scan list contents. 

• The <type> parameter selects which channel list will be queried:

"AIN" selects the Analog Input channel list (this is the Scan List).
"AOUT" selects the Analog Output channel list.
"DIN" selects the Digital Input channel list.
"DOUT" selects the Digital Output channel list.

"DEST"  does not requesting the contents of a channel list type, rather it 
requests the Data Destination number for each channel in the "AIN" channel 
list. 

• Returned Value: Data type is an int16 array). Use ROUT:SEQ:POINTS? to 
determine how many values will be returned in the array. Can also be returned 
as type string, see later comment regarding VXIplug&play function.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

type (string) AIN | AOUT | DEST | DIN | DOUT none
HP E1422 Command Reference  293Chapter 6



ROUTe
When the <type> parameter is "AIN", "AOUT", "DIN", or "DOUT", each value 
returned represents a channel number.
When the <type> parameter is "DEST", each value returned is the data 
destination code for a channel in the "AIN" list. The destination codes are"
1 = Reading will be sent to CVT only
2 = Reading will be sent to FIFO only
3 = Reading will be sent to CVT and FIFO
0 = Reading will be taken but not recorded (neither CVT or FIFO)
-1 = Channel is referenced in algorithm. Algorithm specifies destination.

• *RST Condition: To supply the necessary time delay before Digital inputs are 
read, the analog input (AIN) scan list contains two entries for channel 0 
(100).This minimum delay is maintained by replacing these default channels as 
others are defined by algorithms or ROUT:SEQ:DEF. The three other lists 
contain no channels.

• Send with VXIplug&play Function: hpe1422_cmdString_q(...) to return a 
string which is a comma-separated-list of values

Usage ROUT:SEQ:DEF? AIN query for analog input (Scan List) 
sequence

ROUTe:SEQuence:POINts?

ROUTe:SEQuence:POINts? <type>  returns the number of channels defined in the 
selected channel list types.

Parameters

Comments • The channel list contents and sequence are determined by channel references in 
the algorithms currently defined. 

• The <type> parameter selects which channel list will be queried:

"AIN" selects the Analog Input list.
"AOUT" selects the Analog Output list.
"DIN" selects the Digital Input list.
"DOUT" selects the Digital Output list.

Note: "DEST" is not one of the choices because it is not a channel list type. 

• Returned Value: Numeric. The C_SCPI type is int16.

• *RST Condition: The Analog Input list returns +8, the others return +0.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

type (string) AIN | AOUT | DIN | DOUT none
294 HP E1422 Command Reference  Chapter 6



ROUTe
• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage ROUT:SEQ:POINTS? AIN query for analog input channel count
HP E1422 Command Reference  295Chapter 6



SAMPle

” on 
  SAMPle

The SAMPle subsystem provides commands to set and query the interval between 
channel measurements (pacing).

Subsystem Syntax SAMPle
:TIMer  <interval>
:TIMer?

SAMPle:TIMer

SAMPle:TIMer  <interval> sets the time interval between channel measurements. It 
is used to provide additional channel settling time. See “Settling Characteristics
page 152

Parameters

Comments • The minimum interval is 40 µ seconds. The resolution for interval is 2.5 µsecond.

• If the Sample Timer interval multiplied by the number of channels in the 
specified Scan List is longer than the Trigger Timer interval, at run time a 
"Trigger too fast" error will be generated.

• the SAMP:TIMER interval can change the effect of the 
SENS:CHAN:SETTLING command. SENS:CHAN:SETT specifies the 
number of times a channel measurement should be repeated for channels defined 
in an algorithm. The total settling time per channel then is (SAMP:TIMER 
<interval>) X (<chan_repeats> from SENS:CHAN:SETT)

• When Accepted: Not while INITiated

• Related Commands: SENSE:CHAN:SETTLING, SAMP:TIMER?

• *RST Condition: Sample Timer for all Channel Lists set to 4.0E-5 seconds.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SAMPLE:TIMER  150E-6 Pace measurements at 150µsecond 
intervals channel to channel

SAMPle:TIMer?

SAMPle:TIMer?  returns the sample timer interval.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

interval numeric (float32)
(string)

4.0E-5 to 16.3825E-3 |
MIN | MAX

seconds
296 HP E1422 Command Reference  Chapter 6



SAMPle
Comments • Returned Value: Numeric. The data type is float32.

• Related Commands: SAMP:TIMER

• *RST Condition: Sample Timer set to 4.0E-5 seconds.

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage SAMPLE:TIMER?  Check the interval between channel 
measurements
HP E1422 Command Reference  297Chapter 6



[SENSe]
[SENSe]

The SENSe subsystem controls conversion of the sensed electrical signal to a value 
in Engineering Units (EU) like volts, Ohms, temperature. Sense commands allow 
you to configure and extract data from the A/D-EU conversion portion of the 
instrument (see “INPut” subsystem on page 265 for input signal conditioning.

Subsystem Syntax [SENSe:]
:CHANnel

:SETTling <settle_time>,(@<ch_list>)
:SETTling? (@<channel>)

DATA
:CVTable?  (@<element_list>)

:RESet
:FIFO

[:ALL]?
:COUNt?

:HALF?
:HALF?
:MODE  BLOCk | OVERwrite
:MODE?
:PART?  <n_values>
:RESet

FREQuency:APERture <gate time>,<ch_list>
FREQuency:APERture? <channel>
FUNCtion

:CONDition (@<ch_list>)
:CUSTom [<range>,](@<ch_list>)

:REFerence [<range>,](@<ch_list>)
:TC <type>,[<range>,](@<ch_list>)

:FREQuency (@<ch_list>)
:RESistance  <excite_current>,[<range>,](@<ch_list>)
:STRain

:FBENding  [<range>,](@<ch_list>)
:FBPoisson  [<range>,](@<ch_list>)
:FPOisson  [<range>,](@<ch_list>)
:HBENding  [<range>,](@<ch_list>)
:HPOisson  [<range>,](@<ch_list>)
[:QUARter]  [<range>,](@<ch_list>)
:Q120  [<range>,](@<ch_list>)
:Q350  [<range>,](@<ch_list>)
:USER  [<range>,](@<ch_list>)

:TEMPerature  
<sensor_type>,<sub_type>,[<range>,](@<ch_list>)

:TOTalize (@<ch_list>)
:VOLTage[:DC]  [<range>,](@<ch_list>)

REFerence  <sensor_type>, [<sub_type>,](@<ch_list>)
:CHANnels (@<ref_channel>),(@<ch_list>)
:TEMPerature  <degrees_celsius>
298 HP E1422 Command Reference  Chapter 6



[SENSe]
STRain
:BRIDge

:TYPE FBEN | HBEN | Q120 | Q350 | USER,(@<ch_list>)
:TYPE? (@<channel>)

CONNect BRIDge | EXCitation,(@<ch_list>)
CONNect? (@<channel>)

:EXCitation <excite_v>,(@<ch_list>)
:STATe ON | OFF,(@<ch_list>)
:STATe? (@<channel>)

:EXCitation? (@<channel>)
:GFACtor  <gage_factor>,(@<ch_list>)
:GFACtor? (@<channel>)
:POISson  <poisson_ratio>,(@<ch_list>)
:POISson? (@<channel>)
:UNSTrained <unstrained_v>,(@<ch_list>)
:UNSTrained? (@<channel>)

TOTalize:RESet:MODE INIT | TRIGger,(@<ch_list>)
TOTalize:RESet:MODE? (@<channel>)

[SENSe:]CHANnel:SETTling

[SENSe:]CHANnel:SETTling <num_samples>,<ch_list> specifies the number of 
measurement samples to make on channels in <ch_list> that are also referenced in 
currently defined algorithms. SENS:CHAN:SETTLING is used to provide additional 
settling time only to selected channels that might need it. See “Settling 
Characteristics” on page 152

Parameters

Comments • SENS:CHAN:SETTLING causes each channel specified in <ch_list> that is also 
referenced in an algorithm to appear <num_samples> times in the analog input 
Scan List. Channels that do not appear in any SENS:CHAN:SETT command 
will be entered into the scan list only once when referenced in an algorithm.

• Since the scan list is limited to 512 entries, an error will be generated if the 
number of channels referenced in ROUT:SEQ:DEF, and algorithms plus the 
additional entries from any SENS:CHAN:SETTLING command exceeds 512. 
In addition, The scan list for any RSC is limited to 32 channels so if all channels 
are already specified in the scan list, no further references are allowed with the 
SENS:CHAN:SETT command for that RSC.

• The SAMPLE:TIMER command can change the effect of the 
SENS:CHAN:SETTLING command since SAMPLE:TIMER changes the 
amount of time for each measurement sample.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

settle_time numeric (int16) 1 to 64 none

ch_list string 100 - 15731 none
HP E1422 Command Reference  299Chapter 6



[SENSe]
• When Accepted: Not while INITiated

•  Related Commands: [SENSe:]CHANnel:SETTling?, SAMPLE:TIMER

• *RST Condition:  SENS:CHAN:SETTLING 1,(@100:163)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:CHAN:SETT 4,(@144,156) settle channels 44 and 56 for 4  
measurement periods

[SENSe:]CHANnel:SETTling?

[SENSe:]CHANnel:SETTling? <channel>  returns the current number of samples 
to make on <channel>.

Parameters

Comments • <channel> must specify a single channel.

• Related Commands: SENS:CHAN:SETT, SAMP:TIMER?

• *RST Condition: will return 1 for all channels. 

• Returned Value: returns numeric number of samples, The type is int16.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

[SENSe:]DATA:CVTable?

[SENSe:]DATA:CVTable?  (@<element_list>) returns from the Current Value 
Table the most recent values stored by algorithms.

Parameters

Comments • [SENSe:]DATA:CVTable?  (@<element_list>) allows you to "view" the latest 
values from algorithms and/or analog scans.

• The Current Value Table is an area in memory that can contain as many as 502 
32-bit floating point values. Algorithms can copy any of their variable values 
into these CVT elements while they execute. The algorithm statements to put 
data into the CVT are:

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

element_list channel list 10 - 511 none
300 HP E1422 Command Reference  Chapter 6



[SENSe]

 

For 

ve 
writecvt( <expr>, <element_number> ), and
writeboth( <expr>, <element_number> ).

There is a fixed relationship between channel number and CVT element for 
reading values from channels placed in the Scan List with ROUT:SEQ:DEF. 
When you are mixing Scan List data acquisition with algorithm data storage, be 
careful not to overwrite Scan List generated values with algorithm generated 
values. See “ROUTe:SEQuence:DEFine” on page 291 for controlling CVT
entries from the analog scan list.

• Elements 0 through 9 are not accessible.

• The format of values returned is set using the FORMat[:DATA] command

• Returned Value:  ASCII values are returned in the form ±1.234567E±123. For 
example 13.325 volts would be +1.3325000E+001. Each value is followed by 
a comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.  
The data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987 
Definite Length Arbitrary Block Data format. This data return format is 
explained in “Arbitrary Block Program and Response Data” on page 205. 
REAL 32, each value is 4 bytes in length (the data type is a float32 array). For 
REAL 64 and PACK 64, each value is 8 bytes in length (the data type is a float64 
array).

Note After *RST/Power-on, each element in the CVT contains the IEEE-754 value 
"Not-a-number" (NaN). Elements specified in the DATA:CVT? command that ha
not been written to be an algorithm will return the value 9.91E37.

• *RST Condition: All elements of CVT contains IEEE-754 "Not a Number".

• Use VXIplug&play function: hpe1422_readCVT_Q(...)

Usage SENS:DATA:CVT?  (@10:511) Return all CVT values (502)
SENS:DATA:CVT?  (@30:38) Return 9 values

[SENSe:]DATA:CVTable:RESet

[SENSe:]DATA:CVTable:RESet sets all 64 Current Value Table entries to the 
IEEE-754 "Not-a-number".

Comments • The value of NaN is +9.910000E+037 (ASCII).

• Executing DATA:CVT:RES while the module is INITiated will generate an error 
3000, "Illegal while initiated".
HP E1422 Command Reference  301Chapter 6



[SENSe]

For 

ltage 
rmat).
• When Accepted: Not while INITiated

• Related Commands: SENSE:DATA:CVT?

• *RST Condition: SENSE:DATA:CVT:RESET

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENSE:DATA:CVT:RESET Clear the Current Value Table

[SENSe:]DATA:FIFO[:ALL]?

[SENSe:]DATA:FIFO[:ALL]? returns all values remaining in the FIFO buffer until 
all measurements are complete or until the number of values returned exceeds FIFO 
buffer size (65,024).

Comments • DATA:FIFO? may be used to acquire all values (even while they are being made) 
into a single large buffer, or can be used after one or more DATA:FIFO:HALF? 
commands to return the remaining values from the FIFO.

• The format of values returned is set using the FORMat[:DATA] command.

• Returned Value:  ASCII values are returned in the form ±1.234567E±123. For 
example 13.325 volts would be +1.3325000E+001. Each value is followed by 
a comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.  
The data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987 
Indefinite Length Arbitrary Block Data format. This data return format is 
explained in “Arbitrary Block Program and Response Data” on page 205. 
REAL 32, each value is 4 bytes in length (the data type is a float32 array). For 
REAL 64 and PACK 64, each value is 8 bytes in length (the data type is a float64 
array).

Note Values which are a positive overvoltage return IEEE +INF and a negative overvo
return IEEE -INF (see Table 6-1 on page 262 for actual values for each data fo

• Related Commands: SENSE:DATA:FIFO:HALF?, ROUT:SEQ:DEFine

• *RST Condition: FIFO is empty

• Use VXIplug&play function: hpe1422_readFifo_Q(...)

Usage DATA:FIFO? return all FIFO values until 
measurements complete and FIFO empty
302 HP E1422 Command Reference  Chapter 6



[SENSe]
Command
Sequence

set up scan list/algorithms and trigger
SENSE:DATA:FIFO:ALL?
now execute read statement read statement does not complete until 

triggered measurements are complete 
and FIFO is empty

[SENSe:]DATA:FIFO:COUNt?

[SENSe:]DATA:FIFO:COUNt? returns the number of values currently in the FIFO 
buffer.

Comments • DATA:FIFO:COUNT? is used to determine the number of values to acquire with 
the DATA:FIFO:PART? command.

• Returned Value: Numeric 0 through 65,024. The data type is int32.

• Related Commands: DATA:FIFO:PART?

• *RST Condition: FIFO empty

• Use VXIplug&play function: hpe1422_sensDataFifoCoun_Q(...)

• Send with VXIplug&play Function: hpe1422_cmdInt32_Q(...)

Usage DATA:FIFO:COUNT? Check the number of values in the FIFO 
buffer

[SENSe:]DATA:FIFO:COUNt:HALF?

[SENSe:]DATA:FIFO:COUNt:HALF? returns a 1 if the FIFO is at least half full 
(contains at least 32,768 values), or 0 if FIFO is less than half-full.

Comments • DATA:FIFO:COUNT:HALF? is used as a fast method to poll the FIFO for the 
half-full condition.

• Returned Value: Numeric 1 or 0. The data type is int16.

• Related Commands: DATA:FIFO:HALF?

• *RST Condition: FIFO empty

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Command
Sequence

DATA:FIFO:COUNT:HALF? poll FIFO for half-full status
DATA:FIFO:HALF? returns 32768 values

[SENSe:]DATA:FIFO:HALF?

[SENSe:]DATA:FIFO:HALF? returns 32,768 values if the FIFO buffer is at least 
half-full. This command provides a fast means of acquiring blocks of values from 
HP E1422 Command Reference  303Chapter 6



[SENSe]

For 

ltage 
rmat).
the buffer.

Comments • For acquiring data from continuous scans, your application needs to execute a 
DATA:FIFO:HALF? command and a read statement often enough to keep up 
with the rate that values are being sent to the FIFO.

• Use the DATA:FIFO:ALL? command to acquire the values remaining in the 
FIFO buffer after the ABORT command has stopped execution.

• The format of values returned is set using the FORMat[:DATA] command.

• Returned Value:  ASCII values are returned in the form ±1.234567E±123. For 
example 13.325 volts would be +1.3325000E+001. Each value is followed by 
a comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.  
The data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987 
Definite Length Arbitrary Block Data format. This data return format is 
explained in “Arbitrary Block Program and Response Data” on page 205. 
REAL 32, each value is 4 bytes in length (the data type is a float32 array). For 
REAL 64 and PACK 64, each value is 8 bytes in length (the data type is a float64 
array).

Note Values which are a positive overvoltage return IEEE +INF and a negative overvo
return IEEE -INF (see Table 6-1 on page 262 for actual values for each data fo

• Related Commands: DATA:FIFO:COUNT:HALF?

• *RST Condition: FIFO buffer is empty

• Send with VXIplug&play Function: hpe1422_readFifoFast_Q(...)

Command
Sequence

DATA:FIFO:COUNT:HALF? poll FIFO for half-full status
DATA:FIFO:HALF? returns 32768 values

[SENSe:]DATA:FIFO:MODE

[SENSe:]DATA:FIFO:MODE  <mode> sets the mode of operation for the FIFO 
buffer.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

mode discrete (string) BLOCk | OVERwrite none
304 HP E1422 Command Reference  Chapter 6



[SENSe]
Comments • In BLOCk(ing) mode, if the FIFO becomes full and measurements are still being 
made, the new values are discarded.

• OVERwrite mode is used record the latest 65,024 values. The module must be 
halted (ABORT sent) before attempting to read the FIFO. In OVERwrite Mode, 
if the FIFO becomes full and measurements are still being made, new values 
overwrite the oldest values.

• In both modes Error 3021, "FIFO Overflow" is generated to let you know that 
measurements have been lost.

• When Accepted: Not while INITiated

• Related Commands: SENSE:DATA:FIFO:MODE?, 
SENSE:DATA:FIFO:ALL?, SENSE:DATA:FIFO:HALF?, 
SENSE:DATA:FIFO:PART?, SENSE:DATA:FIFO:COUNT?

• *RST Condition: SENSE:DATA:FIFO:MODE BLOCk

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENSE:DATA:FIFO:MODE  OVERWRITE Set FIFO to overwrite mode
DATA:FIFO:MODE  BLOCK Set FIFO to block mode

[SENSe:]DATA:FIFO:MODE?

[SENSe:]DATA:FIFO:MODE? returns the currently set FIFO mode.

Comments • Returned Value: String value either BLOCK or OVERWRITE. The data type 
is string.

• Related Commands: SENSE:DATA:FIFO:MODE

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage DATA:FIFO:MODE? Enter statement returns either BLOCK or 
OVERWRITE

[SENSe:]DATA:FIFO:PART?

[SENSe:]DATA:FIFO:PART?  <n_values> returns n_values from the FIFO buffer.

Parameters

Comments • Use the DATA:FIFO:COUNT? command to determine the number of values in 
the FIFO buffer.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

n_values numeric (int32) 1 - 2,147,483,647 none
HP E1422 Command Reference  305Chapter 6



[SENSe]

For 

ltage 
rmat).
• The format of values returned is set using the FORMat[:DATA] command.

• Returned Value:  ASCII values are returned in the form ±1.234567E±123. For 
example 13.325 volts would be +1.3325000E+001. Each value is followed by 
a comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.  
The data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987 
Definite Length Arbitrary Block Data format. This data return format is 
explained in “Arbitrary Block Program and Response Data” on page 205. 
REAL 32, each value is 4 bytes in length (the data type is a float32 array). For 
REAL 64 and PACK 64, each value is 8 bytes in length (the data type is a float64 
array).

Note Values which are a positive overvoltage return IEEE +INF and a negative overvo
return IEEE -INF (see Table 6-1 on page 262 for actual values for each data fo

• Related Commands: DATA:FIFO:COUNT?

• *RST Condition: FIFO buffer empty

• Use VXIplug&play function: hpe1422_readFifoFast_Q(...)

Usage DATA:FIFO:PART?  256 return 256 values from FIFO

[SENSe:]DATA:FIFO:RESet

[SENSe:]DATA:FIFO:RESet clears the FIFO of values. The FIFO counter is reset 
to 0.

Comments • When Accepted: Not while INITiated

• Related Commands: SENSE:DATA:FIFO… 

• *RST Condition: SENSE:DATA:FIFO:RESET

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENSE:DATA:FIFO:RESET Clear the FIFO 

[SENSe:]FREQuency:APERture

[SENSe:]FREQuency:APERture <gate_time>,<ch_list> sets the gate time for 
frequency measurement. The gate time is the time period that the SCP will allow for 
counting signal transitions in order to calculate frequency.
306 HP E1422 Command Reference  Chapter 6



[SENSe]
Parameters

Comments • If the channels specified are on an SCP that doesn’t support this function, an 
error will be generated. See your SCP’s User’s Manual for its capabilities.

• Related Commands: SENSe:FUNCtion:FREQuency

• *RST Condition:  .001 sec

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:FREQ:APER .01,(@144) set channel 44 aperture to 10msec 

[SENSe:]FREQuency:APERture?

[SENSe:]FREQuency:APERture? <channel>  returns the frequency counting gate 
time.

Parameters

Comments • If the channel specified is on an SCP that doesn’t support this function, an error 
will be generated. See your SCP’s User’s Manual for its capabilities.

• Related Commands: SENSe:FREQuency:APERture

• Returned Value: returns numeric gate time in seconds, The type is float32.

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

[SENSe:]FUNCtion:CONDition

[SENSe:]FUNCtion:CONDition <ch_list> sets the SENSe function to input the 
digital state for channels in <ch_list>. Also configures digital SCP channels as inputs 
(this is the *RST condition for all digital I/O channels).

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

gate_time numeric (float32) .001 to 1 (.001 resolution) seconds

ch_list string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list string 100 - 163 none
HP E1422 Command Reference  307Chapter 6



[SENSe]
Comments • The HP E1533 SCP senses 8 digital bits on each channel specified by this 
command. The HP E1534 SCP senses 1 digital bit on each channel specified by 
this command.

• If the channels specified are not on a digital SCP, an error will be generated.

• Use the INPut:POLarity command to set input logical sense.

• Related Commands: INPut:POLarity

• *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital 
SCP channels.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage To set second 8-bits of HP E1533 at SCP position 4, and upper 4-bits of HP E1534 
at SCP position 5  to digital inputs send:

SENS:FUNC:COND (@133,144:147)

[SENSe:]FUNCtion:CUSTom

[SENSe:]FUNCtion:CUSTom [<range>,](@<ch_list>) links channels with the 
custom Engineering Unit Conversion table loaded with the DIAG:CUST:MXB or 
DIAG:CUST:PIECE commands. Contact your Hewlett-Packard System Engineer for 
more information on Custom Piecewise Engineering Unit Conversion for your 
application.

Parameters

Comments • See “Creating and Loading Custom EU Conversion Tables” on page 145

• <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 causes an error 
-222 "Data out of range".  Specifying 0 selects the lowest range (.0625VDC).  
Specifying AUTO selects auto range. The default range (no range parameter 
specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings 
in mind when specifying a range setting. For instance, if your expected signal 
voltage is to be approximately .1VDC and the amplifier SCP for that channel 
has a gain of 8, you must set <range> no lower than 1VDC or an input 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

range numeric (float32) see first comment VDC

ch_list channel list (string) 100 - 15731 none
308 HP E1422 Command Reference  Chapter 6



[SENSe]
out-of-range condition will exist.

• If an A/D reading is greater than the <table_range> specified with 
DIAG:CUSTOM:PIEC, an overrange condition will occur.

• If no custom table has been loaded for the channels specified with 
SENS:FUNC:CUST, an error will be generated when an INIT command is 
given.

• When Accepted: Not while INITiated

• Related Commands: DIAG:CUST:…

• *RST Condition: all custom EU tables erased

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage program must put table constants into array table_block
DIAG:CUST:MXB slope,offset,(@116:123) send table to HP E1422 for chs 16-23
SENS:FUNC:CUST 1,(@116:123) link custom EU with chs 16-23
INITiate then TRIGger module

[SENSe:]FUNCtion:CUSTom:REFerence

[SENSe:]FUNCtion:CUSTom:REFerence [<range>,](@<ch_list>) links channels 
with the custom Engineering Unit Conversion table loaded with the 
DIAG:CUST:PIECE command. Measurements from a channel linked with 
SENS:FUNC:CUST:REF will result in a temperature that is sent to the Reference 
Temperature Register. This command is used to measure the temperature of an 
isothermal reference panel using custom characterized RTDs or thermistors.

Parameters

Comments • See “Creating and Loading Custom EU Conversion Tables” on page 145

• The <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 generates an 
error.  Specifying 0 selects the lowest range (.0625VDC).  Specifying AUTO 
selects auto range. The default range (no range parameter specified) is auto 
range.

• If you are using amplifier SCPs, you should set them first and keep their settings 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

range  numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none
HP E1422 Command Reference  309Chapter 6



[SENSe]
in mind when specifying a range setting. For instance, if your expected signal 
voltage is to be approximately .1VDC and the amplifier SCP for that channel 
has a gain of 8, you must set <range> no lower than 1VDC or an input 
out-of-range condition will exist.

• The *CAL? command calibrates temperature channels based on Sense Amplifier 
SCP setup at the time of execution. If SCP settings are changed, those channels 
are no longer calibrated. *CAL? must be executed again.

• Related Commands: DIAG:CUST:PIEC, SENS:FUNC:TEMP, 
SENS:FUNC:CUST:TC, *CAL?

• *RST Condition: all custom EU tables erased

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage program must put table constants into array table_block
DIAG:CUST:PIEC 1,table_block,(@108) send characterized reference transducer 

table for  use by channel 8
SENS:FUNC:CUST:REF .25,(@108) link custom ref temp EU with ch 8
include this channel in a scan list with thermocouple channels (REF channel first)
INITiate then TRIGger module

[SENSe:]FUNCtion:CUSTom:TCouple

[SENSe:]FUNCtion:CUSTom:TCouple  <type>,[<range>,](@<ch_list>) links 
channels with the custom Engineering Unit Conversion table loaded with the 
DIAG:CUST:PIECE command. The table is assumed to be for a thermocouple and 
the <type> parameter will specify the built-in compensation voltage table to be used 
for reference junction temperature compensation. SENS:FUNC:CUST:TC allows 
you to use an EU table that is custom matched to thermocouple wire you have 
characterized. Contact your Hewlett-Packard System Engineer for more information 
on Custom Piecewise Engineering Unit Conversion for your application.

Parameters

Comments • See “Creating and Loading Custom EU Conversion Tables” on page 145.

• The <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 generates an 
error.  Specifying 0 selects the lowest range (.0625VDC).  Specifying AUTO 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

type discrete (string)  E | EEXT | J | K | N | R | S | T none

range  numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none
310 HP E1422 Command Reference  Chapter 6



[SENSe]
selects auto range. The default range (no range parameter specified) is auto 
range.

• If you are using amplifier SCPs, you should set them first and keep their settings 
in mind when specifying a range setting. For instance, if your expected signal 
voltage is to be approximately .1VDC and the amplifier SCP for that channel 
has a gain of 8, you must set <range> no lower than 1VDC or an input 
out-of-range condition will exist.

• The sub_type EEXTended applies to E type thermocouples at 800°C and above.

• The *CAL? command calibrates temperature channels based on Sense Amplifier 
SCP setup at the time of execution. If SCP settings are changed, those channels 
are no longer calibrated. *CAL? must be executed again.

• Related Commands: DIAG:CUST:PIEC, *CAL?,SENS:REF, and 
SENS:REF:TEMP

• *RST Condition: all custom EU tables erased

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage program must put table constants into array table_block
DIAG:CUST:PIEC 1,table_block,(@100:107) send characterized thermocouple table 

for  use by channels 0-7
SENS:FUNC:CUST:TC N,.25,(@100:107) link custom thermocouple EU with chs 

0-7, use reference temperature 
compensation for N type wire.

SENSE:REF  RTD,92,(@120) designate a channel to measure the 
reference junction temperature

include these channels in a scan list (REF channel first)
INITiate then TRIGger module

[SENSe:]FUNCtion:FREQuency

[SENSe:]FUNCtion:FREQuency <ch_list> sets the SENSe function to frequency 
for channels in <ch_list>. Also configures the channels specified as digital inputs.

Parameters

Comments • If the channels specified are on an SCP that doesn’t support this function, an 
error will be generated. See your SCP’s User’s Manual for its capabilities.

• Use the SENSe:FREQuency:APERture command to set the gate time for the 
frequency measurement.

• Related commands: SENS:FREQ:APER

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list string 100 - 163 none
HP E1422 Command Reference  311Chapter 6



[SENSe]
• *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital 
SCP channels

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:FUNC:FREQ (@144) set channel 44’s to frequency

[SENSe:]FUNCtion:RESistance

[SENSe:]FUNCtion:RESistance  <excite_current>,[<range>,](@<ch_list>)  
links the EU conversion type for resistance and range with the channels specified by 
ch_list.

Parameters

Comments • The <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 causes an error.  
Specifying 0 selects the lowest range (.0625VDC).  Specifying AUTO selects 
auto range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings 
in mind when specifying a range setting. For instance, if your expected signal 
voltage is to be approximately .1VDC and the amplifier SCP for that channel 
has a gain of 8, you must set <range> no lower than 1VDC or an input 
out-of-range condition will exist.

• Resistance measurements require the use of Current Source Signal Conditioning 
Plug-Ons.

• The excite_current parameter (excitation current) does not control the current 
applied to the channel to be measured. The excite_current  parameter only passes 
the setting of the SCP supplying current to channel to be measured. The current 
must have already been set using the OUTPUT:CURRENT:AMPL command. 
The choices for excite_current are 30E-6 (or MIN) and 488E-6 (or MAX). 
excite_current may be specified in milliamps (ma) and microamps (ua).

• The *CAL? command calibrates resistance channels based on Current Source 
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings 
are changed, those channels are no longer calibrated. *CAL? must be executed 
again.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

excite_current  discrete(string) 30E-6 | 488E-6 | MIN | MAX Amps

range  numeric (float32) see first comment VDC

ch_list channel list (string) 100 - 163 none
312 HP E1422 Command Reference  Chapter 6



[SENSe]

nels 
 to 

or 
• See “Linking Input Channels to EU Conversion” on page 105

• When Accepted: Not while INITiated

• Related Commands: OUTP:CURR, *CAL?

• *RST Condition: SENSE:FUNC:VOLT (@100:163)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage FUNC:RES  30ua,(@100,105,107) Set channels 0, 5, and 7 to convert voltage 
to resistance assuming current source set 
to 30 µA use auto-range (default)

[SENSe:]FUNCtion:STRain:FBENding
[SENSe:]FUNCtion:STRain:FBPoisson
[SENSe:]FUNCtion:STRain:FPOisson
[SENSe:]FUNCtion:STRain:HBENding
[SENSe:]FUNCtion:STRain:HPOisson
[SENSe:]FUNCtion:STRain[:QUARter]
[SENSe:]FUNCtion:STRain:Q120
[SENSe:]FUNCtion:STRain:Q350
[SENSe:]FUNCtion:STRain:USER

[SENSe:]FUNCtion:STRain:FBENding [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain:FBPoisson [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain:FPOisson [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain:HBENding [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain:HPOisson [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain[:QUARter] [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain:Q120 [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain:Q350 [<range>,](@<ch_list>) 
[SENSe:]FUNCtion:STRain:USER [<range>,](@<ch_list>) 

A Note on Syntax: Although the strain function is comprised of nine separate SCPI 
commands, their syntax and function is so similar they are discussed in a single 
reference entry.

[SENSe:]FUNCtion:STRain:<bridge_type>  [<range>,](@<ch_list>)  links the 
strain EU conversion with the channels specified by ch_list to measure the strain 
bridge output. See “Linking Input Channels to EU Conversion” on page 105

Note When the SENS:FUNC:STR:<bridge_type> command is used with 
HP E1529A channels, the bridge configuration switches for those chan
are set to actually configure the bridge type specified. There is no need
send the configuration only SENSe:STRain:BRIDge:TYPE command f
HP E1529A channels that use the 
SENSe:FUNCtion:STRain:<bridge_type> command.
HP E1422 Command Reference  313Chapter 6



[SENSe]
Some of the SENS:STR:FUNC:<bridge_type> commands are used for both strain 
bridge completion SCPs and the HP E1529A while some are exclusive to one or the 
other.

The following table relates the command syntax to bridge type. See your Strain SCP  
user’s manual for bridge schematics and field wiring information.

Note Because of the number of possible strain gage configurations, the driver 
must generate any Strain EU conversion tables and download them to the 
instrument when INITiate is executed. This can cause the time to complete 
the first INIT command to exceed 1 minute on some platforms, notably the 
HP E1405A/E1406A. Subsequent INITs (with no other configuration 
changes) do not need to regenerate EU tables and execute much faster.

Parameters

Comments • Strain measurements require the use of Bridge Completion Signal Conditioning 
Plug-Ons or a Remote Strain Bridge Conditioning Unit.

• Bridge Completion SCPs and RSCs provide the strain measurement bridges and 
their excitation voltage sources. ch_list specifies the voltage sensing channels 
that are to measure the bridge outputs. Measuring channels on a Bridge 
Completion SCP only returns that SCP’s excitation source voltage. 

• The <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 

Command Bridge Type Strain SCP and HP E1529 Usage

:FBENding Full Bending Bridge Both HP E1529A and SCPs

:FBPoisson Full Bending Poisson Bridge SCPs only

:FPOisson Full Poisson Bridge SCPs only

:HBENding Half Bending Bridge Both HP E1529A and SCPs

:HPOisson Half Poisson Bridge SCPs only

[:QUARter] Quarter Bridge (default) Both HP E1529A and SCPs.
For HP E1529A, selects Q350

:Q120 Quarter Bridge 120Ω HP E1529A only

:Q350 Quarter Bridge 350Ω HP E1529A only

:USER Quarter Bridge with user 
installed resistor

HP E1529A only

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

range numeric (float32) see comments VDC

ch_list channel list (string) 100 - 15731 none
314 HP E1422 Command Reference  Chapter 6



[SENSe]
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 generates an 
error.  Specifying 0 selects the lowest range (.0625VDC).  Specifying AUTO 
selects auto range. The default range (no range parameter specified) is auto 
range. 

• If you are using amplifier SCPs, you should set them first and keep their settings 
in mind when specifying a range setting. For instance, if your expected signal 
voltage is to be approximately .1VDC and the amplifier SCP for that channel 
has a gain of 8, you must set <range> no lower than 1VDC or an input 
out-of-range condition will exist.

• The HP E1529A has a fixed gain of 32. Keep this in mind when you set <range>.

• The channel calibration command (*CAL?) calibrates the excitation voltage 
source on each Bridge Completion SCP.

• When Accepted: Not while INITiated

• Related Commands: *CAL?, [SENSE:]STRAIN…

• *RST Condition: SENSE:FUNC:VOLT 0,(@100:163)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:FUNC:STRAIN:QUAR  1,(@100,105,107)      quarter bridge conversion for
       channels 0, 5, and 7

FUNC:STRAIN:HBEN  1,(@10800:10931) full bridge conversion for E1529A 
channels 0800 to 0931 (64 channels) 

[SENSe:]FUNCtion:TEMPerature

[SENSe:]FUNCtion:TEMPerature  <type>,<sub_type>,[<range>,](@<ch_list>)  
links channels to an EU conversion for temperature based on the sensor specified in 
type and sub_type. Not for sensing thermocouple reference temperature (for that, 
use the SENS:REF <type>,<sub_type>,(@<channel>) command).

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

type discrete (string) RTD | THERmistor | TCouple none

sub_type numeric (float32)
numeric (float32)
discrete (string)

for RTD use  85 | 92
for THER use 2250 | 5000 | 10000
for TC use CUSTom | E | EEXT |
 J | K | N | R | S | T

none
Ohms
none

range  numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none
HP E1422 Command Reference  315Chapter 6



[SENSe]
Comments • Resistance temperature measurements (RTDs and THERmistors) require the use 
of Current Source Signal Conditioning Plug-Ons. The following table shows the 
Current Source setting that must be used for the following RTDs and 
Thermistors:

• The <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 generates an 
error.  Specifying 0 selects the lowest range (.0625VDC).  Specifying AUTO 
selects auto range. The default range (no range parameter specified) is auto 
range.

• If you are using amplifier SCPs, you should set them first and keep their settings 
in mind when specifying a range setting. For instance, if your expected signal 
voltage is to be approximately .1VDC and the amplifier SCP for that channel 
has a gain of 8, you must set <range> no lower than 1VDC or an input 
out-of-range condition will exist.

• The sub_type parameter: values of 85 and 92 differentiate between 100 Ohm 
(@ 0°C) RTDs with temperature coefficients of 0.00385 and and 0.00392 
Ohm/Ohm/°C respectively. The sub_type values of 2250, 5000, and 10000 refer 
to thermistors that match the Omega 44000 series temperature response curve. 
These 44000 series thermistors are selected to match the curve within 0.1 or 
0.2°C. For thermistors sub_type may be specified in Kohms (kohm).

The sub_type EEXTended applies to E type thermocouples at 800°C and above.

CUSTom is pre-defined as Type K, with no reference junction compensation 
(reference junction assumed to be at 0 °C).

• The *CAL? command calibrates temperature channels based on Current Source 
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings 
are changed, those channels are no longer calibrated. *CAL? must be executed 
again.

• See “Linking Input Channels to EU Conversion” on page 105

• When Accepted: Not while INITiated

• Related Commands: *CAL?, OUTP:CURR (for RTDs and Thermistors), 
SENS:REF, and SENS:REF:TEMP (for Thermocouples) 

• *RST Condition: SENSE:FUNC:VOLT AUTO,(@100:163)

• Send with VXIplug&play Function: hpe1422_cmd(...)

MAX (488µA)  for RTD and THER,2250

MIN (30µA) for THER,5000 and THER,10000
316 HP E1422 Command Reference  Chapter 6



[SENSe]
Usage Link two channels to the K type thermocouple temperature conversion
SENS:FUNC:TEMP  TCOUPLE,K,(@101,102)

Link channel 0 to measure reference temperature using 5K thermistor
SENS:REF  THER,5000,(@100)

[SENSe:]FUNCtion:TOTalize

[SENSe:]FUNCtion:TOTalize <ch_list> sets the SENSe function to TOTalize for 
channels in <ch_list>.

Parameters

Comments • The totalize function counts rising edges of digital transitions at 
Frequency/Totalize SCP channels. The counter is 24 bits wide and can count up 
to 16,777,215.

• The SENS:TOT:RESET:MODE command controls which events will reset the 
counter. 

• If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• Related Commands: SENS:TOT:RESET:MODE, INPUT:POLARITY

• *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital 
SCP channels.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:FUNC:TOT (@134) channel 34 is a totalizer

[SENSe:]FUNCtion:VOLTage[:DC]

[SENSe:]FUNCtion:VOLTage[:DC]  [<range>,](@<ch_list>) links the specified 
channels to return DC voltage.

Parameters

Comments • The <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

range numeric (float32) see comments VDC

ch_list channel list (string) 100 - 15731 none
HP E1422 Command Reference  317Chapter 6



[SENSe]
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 causes an error.  
Specifying 0 selects the lowest range (.0625VDC).  Specifying AUTO selects 
auto range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs or RSCs, you should set them first and keep their 
settings in mind when specifying a range setting. For instance, if your expected 
signal voltage is to be approximately .1VDC and the amplifier SCP for that 
channel has a gain of 8, you must set <range> no lower than 1VDC or an input 
out-of-range condition will exist.

• The *CAL? command calibrates channels based on Sense Amplifier SCP setup 
at the time of execution. If SCP settings are changed, those channels are no 
longer calibrated. *CAL? must be executed again.

• See “Linking Input Channels to EU Conversion” on page 105

• When Accepted: Not while INITiated

• Related Commands: *CAL?, INPUT:GAIN…

• *RST Condition: SENSE:FUNC:VOLT  AUTO,(@100:163)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage FUNC:VOLT  (@140:163) Channels 40 - 63 measure voltage in 
auto-range (defaulted)

[SENSe:]REFerence

[SENSe:]REFerence  <type>,<sub_type>,[<range>,](@<ch_list>) links channel 
in <ch_list> to the reference junction temperature EU conversion based on type and 
sub_type. When scanned, the resultant value is stored in the Reference Temperature 
Register, and by default the FIFO and CVT. This is a resistance temperature 
measurement and uses the on-board 122 µA current source.

Note The reference junction temperature value generated by scanning the reference 
channel is stored in the Reference Temperature Register. This reference temperature 
is used to compensate all subsequent thermocouple measurements until the register 
is overwritten by another reference measurement or by specifying a constant 
reference temperature with the SENSE:REF:TEMP command. If used, the reference 
junction channel must be scanned before any thermocouple channels. Use the 
SENSE:REF:CHANNELS command to place the reference measuring channel into 
the scan list ahead of the thermocouple measuring channels.
318 HP E1422 Command Reference  Chapter 6



[SENSe]
Parameters

Comments • See “Linking Input Channels to EU Conversion” on page 105

• The <range> parameter: The HP E1422 has five ranges: .0625VDC, .25VDC, 
1VDC, 4VDC, and 16VDC.  To select a range, simply specify the range value 
(for example, 4 selects the 4VDC range).  If you specify a value larger than one 
of the first four  ranges, the HP E1422 selects the next higher range (for example, 
4.1 selects the 16VDC range).  Specifying a value larger than 16 causes an error.  
Specifying 0 selects the lowest range (.0625VDC).  Specifying AUTO selects 
auto range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs or RSCs, you should set them first and keep their 
settings in mind when specifying a range setting. For instance, if your expected 
signal voltage is to be approximately .1VDC and the amplifier SCP for that 
channel has a gain of 8, you must set <range> no lower than 1VDC or an input 
out-of-range condition will exist.

• The <type> parameter specifies the sensor type that will be used to determine 
the temperature of the isothermal reference panel. <type> CUSTom is 
pre-defined as Type E with 0°C reference junction temp and is not re-defineable.  

•  For <type> THERmistor, the <sub_type> parameter may be specified in ohms 
or kohm.

• The *CAL? command calibrates resistance channels based on Current Source 
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings 
are changed, those channels are no longer calibrated. *CAL? must be executed 
again.

• Related Commands: SENSE:FUNC:TEMP

• *RST Condition: Reference temperature is 0 °C

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENSE:REF  RTD,92,(@120) sense the reference temperature on 
channel 20 using an RTD

SENSE:REF  THR,5000,(@13231) sense the reference temperature on RSC 
channel 3231 using a 5K thermistor

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

type discrete (string) THERmistor | RTD | CUSTom none

sub_type numeric (float32)
numeric (float32)

for THER use 5000
for RTD use 85 | 92
for CUSTom use 1

Ohm
none
none

range  numeric (float32) see comments VDC

ch_list channel list (string) 100 - 15731 none
HP E1422 Command Reference  319Chapter 6



[SENSe]
[SENSe:]REFerence:CHANnels

[SENSe:]REFerence:CHANnels  (@<ref_channel>),(@<ch_list>) causes channel 
specified by <ref_channel> to appear in the scan list just before the channel(s) 
specified by <ch_list>. This command is used to include the thermocouple reference 
temperature channel in the scan list before other thermocouple channels are 
measured.

Parameters

Comments • Use SENS:FUNC:TEMP to configure channels to measure thermocouples. Then 
use SENS:REF to configure one or more channels to measure an isothermal 
reference temperature. Now use SENS:REF:CHAN to group the reference 
channel with its thermocouple measurement channels in the scan list.

• If thermocouple measurements are made through more than one isothermal 
reference panel, you will set up a reference channel for each. Execute the 
SENS:REF:CHAN command for each reference/measurement channel group.

• Related commands: SENS:FUNC:TEMP, SENS:REF

• *RST Condition: Scan List contains no channel references.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:FUNC:TEMP TC,E,.0625,(@108:115)    E type TCs on channels 8 through 15
SENS:REF THER,5000,1,(@106)      Reference ch is thermistor at channel 6
SENS:REF RTD,85,.25,(@107)      Reference ch is RTD at channel 7
SENS:REF:CHAN (@106),(@108:111)      Thermistor measured before chs 8 - 11
SENS:REF:CHAN (@107),(@112:115)      RTD measured before chs 12 - 15

[SENSe:]REFerence:TEMPerature

[SENSe:]REFerence:TEMPerature  <degrees_c> stores a fixed reference junction 
temperature in the Reference Temperature Register. Use when the thermocouple 
reference junction is kept at a controlled temperature.

Note This reference temperature is used to compensate all subsequent thermocouple 
measurements until the register is overwritten by another SENSE:REF:TEMP value 
or by scanning a channel linked with the SENSE:REFERENCE command. If used, 
SENS:REF:TEMP must be executed before scanning any thermocouple channels.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ref_channel channel list (string) 100 - 15731 none

ch_list channel list (string) 100 - 15731 none
320 HP E1422 Command Reference  Chapter 6



[SENSe]
Parameters

Comments • This command is used to specify to the HP E1422 the temperature of a controlled 
temperature thermocouple reference junction.

• When Accepted: Not while INITiated

• Related Commands: FUNC:TEMP TC…

• *RST Condition: Reference temperature is 0 °C

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENSE:REF:TEMP  40 subsequent thermocouple conversion will 
assume compensation junction at 
40 degrees C

[SENSe:]STRain:BRIDge[:TYPE]

[SENSe:]STRain:BRIDge[:TYPE] <select>,(@<ch_list>) sets the HP E1529A’s 
bridge configuration switches for channels specified by <ch_list>.

Parameters

Comments • For a discription of the effects of <select> see  "HP E1529A Bridge 
Configurations" on page 67

• Related Commands: SENSE:FUNC:…

• *RST Condition: SENS:STR:BRIDG[:TYPE] FBEN for all HP E1529A 
channels

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:STRAIN:BRID Q120,(@1000:10031) configure strain RSC unit channels 00-31 
connected to on-board channel 00 to 120 
Ohm quarter bridge

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

degrees_c numeric (float32) -126 to +126 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

select discrete (string) FBENding | HBENding | Q120 | Q350 | 
USER

none

ch_list channel list (string) 10000 - 15731 none
HP E1422 Command Reference  321Chapter 6



[SENSe]
[SENSe:]STRain:BRIDge:[TYPE]?

[SENSe:]STRain:BRIDge[:TYPE]? (@<channel>) returns the HP E1529A’s 
bridge configuration for channel specified by <ch_list>.

Parameters

Comments • <channel> must be a single channel only.

• Returned Value:  one of "FBEN" | "HBEN" | "Q120" | "Q350" | "USER". The 
data type is string.

• Related Commands: SENSE:STR:BRID[:TYPE]

• *RST Condition: SENS:STR:BRID:TYPE FBEN for all HP E1529A channels

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage SENS:STRAIN:BRID (@10022) check strain RSC unit channel 22 bridge 
configuration connected to on-board 
channel 00

[SENSe:]STRain:CONNect

[SENSe:]STRain:CONNect <select>,(@<ch_list>) connects the HP E1529A 
channels specified by <ch_list> to sense either the strain bridge output or the bridge 
excitation supply. Only one channel for each HP E1529A needs to be specified in 
<ch_list> and all channels on that unit will configure as specified in <select>.

Parameters

Comments • Related Commands: SENSE:STRAIN:…, SENSE:FUNC:STRAIN…

• *RST Condition: SENS:STR:CONN BRIDGE for all HP E1529A channels

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:STRAIN:CONN EXC,(@10000:10031)configure strain RSC unit channels 00-31 
connected to on-board channel 00 to 
measure excitation voltages

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 10000 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

select discrete (string) BRIDge | EXCitation none

ch_list channel list (string) 10000 - 15731 none
322 HP E1422 Command Reference  Chapter 6



[SENSe]

oint. 

EU 

e 
[SENSe:]STRain:CONNect?

[SENSe:]STRain:CONNect? (@<channel>) returns the measurement connection 
state for the single HP E1529A channel specified by <channel>.

Parameters

Comments • <channel> must specify a single channel only.

• Returned Value:  one of "BRID" or "EXC". The data type is string.

• Related Commands: SENSE:STR:CONN, SENSE:STRAIN:…, 
SENSE:FUNC:STRAIN…

• *RST Condition: SENS:STR:CONN is BRIDGE for all HP E1529A channels

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage SENS:STRAIN:CONN? (@10022) check the measurement connection for 
strain RSC unit channel 22 connected to 
on-board channel 00

[SENSe:]STRain:EXCitation

[SENSe:]STRain:EXCitation <excite_v>,(@<ch_list>) specifies the excitation 
voltage value to be used in the strain EU conversion for the channels specified by 
<ch_list>. The value used is usually measured at each strain bridge’s excitation p
For the HP E1529A, the MEAS:VOLT:EXCitation command will make the 
measurements and automatically send the value to each measured channel’s 
conversion.This command does not control the output voltage of any source. 

Note The maximum excitation voltage the HP E1422A can sense through th
HP E1529A’s excitation sense path is 16 volts (±8VDC centered about the 
Gnd terminal). If you supply higher excitation voltage through the 
HP E1529A, don’t connect the excitation sense terminals.

Parameters

Comments • <ch_list> must specify the channel used to sense the bridge voltage, not the 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 10000 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

excite_v numeric (float32) .01 - 99 volts

ch_list channel list (string) 100 - 15731 none
HP E1422 Command Reference  323Chapter 6



[SENSe]
channel position on a Bridge Completion SCP.

• Related Commands: SENSE:STRAIN:…, SENSE:FUNC:STRAIN…, 
MEAS:VOLT:EXCitation

• *RST Condition: 3.9V

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STRAIN:EXC Meas_excV,(@107) set measured excitation voltage for 
channel 7

STRAIN:EXC Meas_excV,(@10022) set excitation voltage for E1529A channel 
0022

[SENSe:]STRain:EXCitation?

[SENSe:]STRain:EXCitation? (@<channel>) returns the excitation voltage value 
currently set for the sense channel specified by <channel>.

Parameters

Comments • <channel> must specify a single channel only.

• Returned Value:  Numeric value of excitation voltage. The data type is float32.

• Related Commands:  SENS:STRAIN:EXCitation, MEAS:VOLT:EXCitation

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage STRAIN:EXC?  (@107) query excitation voltage for channel 7
enter statement here returns the excitation voltage set by 

STR:EXC

[SENSe:]STRain:EXCitation:STATe

[SENSe:]STRain:EXCitation:STATe <enable>,(@<ch_list>) connects or 
disconnects all four excitation supply ports on an HP E1529A. Only one channel for 
each HP E1529A needs to be specified in <ch_list> and all four excitation supply 
ports on that unit will configure as specified in <enable>. The first channel number 
on each possible E1529A is: 10000, 10100, 10800, 10900, 11600, 11700, 12400, 
12500, 13200, 13300, 14000, 14100, 14800, 14900, 15600, 15700.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 15731 none
324 HP E1422 Command Reference  Chapter 6



[SENSe]
Parameters

Comments • Related Commands: SENSE:STRAIN:…, SENSE:FUNC:STRAIN…

• *RST Condition: OFF

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STRAIN:EXC:STAT ON,(@10800) turn on all excitation supplies on 
HP E1529 connected to on-board 
channel 08

[SENSe:]STRain:EXCitation:STATe?

[SENSe:]STRain:EXCitation:STATe? (@<channel>) returns the state of all four 
HP E1529A excitation supply ports referenced in <channel>. The first channel 
number on each possible E1529A is: 10000, 10100, 10800, 10900, 11600, 11700, 
12400, 12500, 13200, 13300, 14000, 14100, 14800, 14900, 15600, 15700..

Parameters

Comments • Related Commands: SENSE:STRAIN:EXC:STAT

• Returned Value: Numeric, 0 or 1. Type is uint16.

• *RST Condition: OFF

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage STRAIN:EXC:STAT? (@10800) check state of excitation supply ports on 
HP E1529 connected to channel 08

[SENSe:]STRain:GFACtor

[SENSe:]STRain:GFACtor <gage_factor>,(@<ch_list>) specifies the gage factor 
to be used to convert strain bridge readings for the channels specified by <ch_list>.

Parameter
Name

Parameter

Type

Range of
Values

Default 
Units

enable boolean (uint16) ON | OFF none

ch_list channel list (string) 10000 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 1000 - 15731 none
HP E1422 Command Reference  325Chapter 6



[SENSe]
Parameters

Comments • <ch_list> must specify the SCP or RSC channel used to sense the bridge voltage, 
not the channel position on a Bridge Completion SCP.

• Related Commands: SENSE:STRAIN:GFAC?, SENSE:FUNC:STRAIN…

• *RST Condition: Gage factor is 2

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:STRAIN:GFAC 3,(@100:107) set gage factor for channels 0 through 7
SENS:STRAIN:GFAC 2.2,(@10000:10931) set gage factor for HP E1529A channels 

0000 through 0931 (128 channels)

[SENSe:]STRain:GFACtor?

[SENSe:]STRain:GFACtor? (@<channel>) returns the gage factor currently set for 
the sense channel specified by <channel>.

Parameters

Comments • Returned Value:  Numeric value of gage factor. The data type is float32.

• <channel> must specify a single channel only.

• Related Commands:  STRAIN:GFACTOR

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage STRAIN:GFAC?  (@107) query gage factor for channel 7
enter statement here returns the gage factor set by STR:GFAC

[SENSe:]STRain:POISson

[SENSe:]STRain:POISson <poisson_ratio>,(@<ch_list>) sets the Poisson ratio to 
be used for EU conversion of values measured on sense channels specified by 
<ch_list>.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

gage_factor numeric (float32) 1 - 5 none

ch_list channel list (string) 100 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 15731 none
326 HP E1422 Command Reference  Chapter 6



[SENSe]

ut 
Parameters

Comments • <ch_list> must specify channels used to sense strain bridge output, not channel 
positions on a Bridge Completion SCP.

• Related Commands: FUNC:STRAIN…, STRAIN:POISson?

• *RST Condition: Poisson ratio is .3

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STRAIN:POISSON .5,(@124:131) set Poisson ratio for sense channels 24 
through 31

[SENSe:]STRain:POISson?

[SENSe:]STRain:POISson? (@<channel>) returns the Poisson ratio currently set 
for the sense channel specified by <channel>.

Parameters

Comments • Returned Value: numeric value of the Poisson ratio. The data type is float32.

• <channel> must specify a single channel only.

• Related Commands: FUNC:STRAIN…, STRAIN:POISSON

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage STRAIN:POISSON?  (@131) query for the Poisson ratio specified for 
sense channel 31

enter statement here enter the Poisson ratio value

[SENSe:]STRain:UNSTrained

[SENSe:]STRain:UNSTrained <unstrained_v>,(@<ch_list>) specifies the 
unstrained voltage value to be used to convert strain bridge readings for the channels 
specified by <ch_list>. The HP E1529A can use the MEAS:VOLT:UNSTrained 
command which automatically measures the unstrained bridge values and sends each 
value to the channels’ EU conversion. This command does not control the outp

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

poisson_ratio numeric (float32) .1 - .5 none

ch_list channel list (string) 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 163 none
HP E1422 Command Reference  327Chapter 6



[SENSe]
voltage of any source.

Parameters

Comments • Use a voltage measurement of  the unstrained strain bridge sense channel to 
determine the correct value for unstrained_v.

• <ch_list> must specify the channel used to sense the bridge voltage, not the 
channel position on a Bridge Completion SCP.

• Related Commands: SENSE:STRAIN:UNST?, SENSE:FUNC:STRAIN…, 
MEAS:VOLT:UNSTRained

• *RST Condition: Unstrained voltage is zero

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STRAIN:UNST .024,(@100) set unstrained voltage for channel 0

[SENSe:]STRain:UNSTrained?

[SENSe:]STRain:UNSTrained? (@<channel>) returns the unstrained voltage 
value currently used for EU conversion for the sense channel specified by <channel>. 
This command does not make a measurement.

Parameters

Comments • Returned Value:  Numeric value of unstrained voltage. The data type is float32.

• <channel> must specify a single channel only.

• Related Commands:  STRAIN:UNST

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage STRAIN:UNST?  (@107) query unstrained voltage for channel 7
enter statement here returns the unstrained voltage set by 

STR:UNST

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

unstrained_v numeric (float32) -16 through +16 volts

ch_list channel list (string) 100 - 15731 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 15731 none
328 HP E1422 Command Reference  Chapter 6



[SENSe]
[SENSe:]TOTalize:RESet:MODE

[SENSe:]TOTalize:RESet:MODE <select>,<ch_list> sets the mode for resetting 
totalizer channels in <ch_list>.

Parameters

Comments • In the INIT mode the total is reset only when the INITiate command is executed. 
In the TRIGger mode the total is reset every time a new scan is triggered.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• Related Commands: SENS:FUNC:TOT, INPUT:POLARITY

• *RST Condition: SENS:TOT:RESET:MODE INIT

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SENS:TOT:RESET:MODE TRIG,(@134) totalizer at channel 34 resets at each 
trigger event

[SENSe:]TOTalize:RESet:MODE?

[SENSe:]TOTalize:RESet:MODE? <channel> returns the reset mode for the 
totalizer channel in <channel>.

Parameters

Comments • Channel must specify a single channel.

• If the channel specified is not on a frequency/totalize SCP, an error will be 
generated.

• Returned Value: returns INIT or TRIG. The type is string.

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

select discrete (string) INIT | TRIGger seconds

ch_list string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none
HP E1422 Command Reference  329Chapter 6



SOURce
SOURce

The SOURce command subsystem allows configuring output SCPs as well as linking 
channels to output functions.

Subsystem Syntax SOURce
:FM

:STATe 1 | 0 | ON | OFF,(@<ch_list>)
:STATe? (@<channel>)

:FUNCtion
[:SHAPe]

:CONDition (@<ch_list>)
:PULSe (@<ch_list>)
:SQUare (@<ch_list>)

:PULM
:STATe 1 | 0 | ON | OFF,(@<ch_list>)
:STATe? (@<channel>)

:PULSe
:PERiod <period>,(@<ch_list>)
:PERiod? (@<channel>)
:WIDTh <pulse_width>,(@<ch_list>)
:WIDTh? (@<channel>)

:VOLTage
[:AMPLitude] <-offset_v>,(@<ch_list>)

SOURce:FM[:STATe]

SOURce:FM[:STATe] <enable>,(@<ch_list>) enables the Frequency Modulated 
mode for a PULSe channel.

Parameters

Comments • This command is coupled with the SOURce:PULM:STATE command. If the 
FM state is ON then the PULM state is OFF. If the PULM state is ON then the 
FM state is OFF. If both the FM and the PULM states are OFF then the PULSe 
channel is in the single pulse mode.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• Use SOURce:FUNCtion[:SHAPe]:SQUare to set FM pulse train to 50% duty 
cycle. Use SOURce:PULSe:PERiod to set the period

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list string 100 - 163 none
330 HP E1422 Command Reference  Chapter 6



SOURce
• *RST Condition: SOUR:FM:STATE OFF, SOUR:PULM:STATE OFF, 
SENS:FUNC:COND and INP:POL for all digital SCP channels

• Related Commands: SOUR:PULM[:STATe], SOUR:PULS:POLarity, 
SOUR:PULS:PERiod, SOUR:FUNC[:SHAPe]:SQUare

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage The variable frequency control for this channel is provided by the algorithm language. 
When the algorithm executes an assignment statement to this channel, the value 
assigned will be the frequency setting. For example:

O143 = 2000 /* set channel 43 to 2KHz */

SOURce:FM:STATe?

SOURce:FM:STATe? (@<channel>) returns the frequency modulated mode state 
for a PULSe channel.

Parameters

Comments • Channel must specify a single channel.

• If the channel specified is not on a Frequency/Totalize SCP, an error will be 
generated.

• Returned Value: returns 1 (ON) or 0 (OFF). The type is uint16.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

SOURce:FUNCtion[:SHAPe]:CONDition

SOURce:FUNCtion[:SHAPe]:CONDition (@<ch_list>) sets the SOURce function 
to output digital patterns to bits in <ch_list>.

Parameters

Comments • The HP E1533 SCP sources 8 digital bits on the channel specified by this 
command. The HP E1534 SCP can source 1 digital bit on each of the the 
channels specified by this command.

• Send with VXIplug&play Function: hpe1422_cmd(...)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list string 100 - 163 none
HP E1422 Command Reference  331Chapter 6



SOURce
SOURce:FUNCtion[:SHAPe]:PULSe

SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>) sets the SOURce function to 
PULSe for the channels in <ch_list>. 

Parameters

Comments • This PULSe channel function is further defined by the SOURce:FM:STATe and 
SOURce:PULM:STATe commands. If the FM state is enabled then the 
frequency modulated mode is active. If the PULM state is enabled then the pulse 
width modulated mode is active. If both the FM and the PULM states are 
disabled then the PULSe channel is in the single pulse mode.

• Send with VXIplug&play Function: hpe1422_cmd(...)

SOURce:FUNCtion[:SHAPe]:SQUare

SOURce:FUNCtion[:SHAPe]:SQUare (@<ch_list>) sets the SOURce function to 
output a square wave (50% duty cycle) on the channels in <ch_list>.

Parameters

Comments • Send with VXIplug&play Function: hpe1422_cmd(...)

Usage The frequency control for these channels is provided by the algorithm language 
function:.

O143 = 2000 /* set channel 43 to 2KHz */

SOURce:PULM[:STATe]

SOURce:PULM[:STATe] <enable>,(@<ch_list>) enable the pulse width 
modulated mode for the PULSe channels in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

ch_list string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list string 100 - 163 none
332 HP E1422 Command Reference  Chapter 6



SOURce
Comments • This command is coupled with the SOURce:FM command. If the FM state is 
enabled then the PULM state is disabled. If the PULM state is enabled then the 
FM state is disabled. If both the FM and the PULM states are disabled then the 
PULSe channel is in the single pulse mode.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• *RST Condition: SOUR:PULM:STATE OFF

• Send with VXIplug&play Function: hpe1422_cmd(...)

SOURce:PULM:STATe?

SOURce:PULM[:STATe]? (@<channel>) returns the pulse width modulated mode 
state for the PULSe channel in <channel>.

Parameters

Comments Channel must specify a single channel.

• Returned Value: returns 1 (on) or 0 (off). The type is int16.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

SOURce:PULSe:PERiod

SOURce:PULSe:PERiod <period>,(@<ch_list>) sets the fixed pulse period value 
on a pulse width modulated pulse channel. This sets the frequency (1/period) of the 
pulse-width-modulated pulse train.

Parameters

Comments • If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

• Related Commands: SOUR:PULM:STATE, SOUR:PULS:POLarity

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

period numeric (float32) 25E-6 to 7.8125E-3
(resolution 0.238µsec)

seconds

ch_list string 100 - 163 none
HP E1422 Command Reference  333Chapter 6



SOURce
• The variable pulse-width control for this channel is provided by the algorithm 
language. When the algorithm executes an assignment statement to this channel, 
the value assigned will be the pulse-width setting. For example:

O140 = .0025 /* set channel 43 pulse-width to 2.5 msec */

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SOUR:PULS:PER .005,(@140) set PWM pulse train to 200 Hz on 
channel 40

SOURce:PULSe:PERiod?

SOURce:PULSe:PERiod? (@<channel>) returns the fixed pulse period value on 
the pulse width modulated pulse channel in <channel>.

Parameters

Comments • If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• Returned Value: numeric period. The type is float32.

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

SOURce:PULSe:WIDTh

SOURce:PULSe:WIDTh <pulse_width>,(@<ch_list>) sets the fixed pulse width 
value on the frequency modulated pulse channels in <ch_list>.

Parameters

Comments • If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

• Related Commands: SOUR:PULM:STATE, SOUR:PULS:POLarity

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

pulse_width numeric (float32) 7.87E-6 to 7.8125E-3
(238.4E-9 resolution) 

seconds

ch_list string 100 - 163 none
334 HP E1422 Command Reference  Chapter 6



SOURce
• The variable frequency control for this channel is provided by the algorithm 
language. When the algorithm executes an assignment statement to this channel, 
the value assigned will be the frequency setting. For example:

O143 = 2000 /* set channel 43 to 2KHz */

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SOUR:PULS:WIDTH 2.50E-3,(@143) set fixed pulse width of 2.5 msec on 
channel 43

SOURce:PULSe:WIDTh?

SOURce:PULSe:WIDTh? (@<ch_list>) returns the fixed pulse width value on a 
frequency modulated pulse channel.

Parameters

Comments • Channel must specify a single channel.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be 
generated.

• Returned Value: returns the numeric pulse width. The type is float32.

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

SOURce:VOLTage[:AMPLitude]

SOURce:VOLTage[:AMPLitude] <-offset_v>,(@<ch_list>) can be used to reduce 
bridge offset voltage present at the dynamic strain "Buffered Output" channel 
connectors.

Parameters

Comments • If the channels specified are not on an E1529A, an error will be generated.

• *RST Condition: SOUR:VOLT 0,(@ <all E1529A channels>)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel string 100 - 163 none

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

-offset_v numeric (float32) -1.651 to +1.664 | MIN | MAX
(resolution 13mV)

volts

ch_list string 10000 - 15731 none
HP E1422 Command Reference  335Chapter 6



SOURce
• To reduce the offset voltage at each dynamic strain "Buffered Output" channel:

1. Measure a Buffered Output channel with its bridge unstrained and place the 
value in a variable we’ll call offset_v.

2. Send minus offset_v to that channel with the SOUR:VOLT command. For 
example:  SOUR:VOLT -offset_v,(@10000)

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage SOUR:VOLT .041,(@10031) correct a -41mV offset at channel 31 of 
E1529A 00.
336 HP E1422 Command Reference  Chapter 6



STATus
STATus

The STATus subsystem communicates with the SCPI defined Operation and 
Questionable Data status register sets. Each is comprised of a Condition register, a 
set of Positive and Negative Transition Filter registers, an Event register, and an 
Enable register. Condition registers allow you to view the current real-time states of 
their status signal inputs (signal states are not latched). The Positive and Negative 
Transition Filter registers allow you to control the polarity of change from the 
Condition registers that will set Event register bits. Event registers contain latched 
representations of signal transition events from their Condition register. Querying an 
Event register reads and then clears its contents, making it ready to record further 
event transitions from its Condition register. Enable registers are used to select which 
signals from an Event register will be logically ORed together to form a summary bit 
in the Status Byte Summary register. Setting a bit to one in an Enable register enables 
the corresponding bit from its Event register.

Note For a complete discussion See “Using the Status System” on page 137

 

Figure 6-5. General Status Register Organization

Condition
Register

Bit 0

Bit 1

Bit 15

Bit 14

Event
Register

Enable
Register

Logical
OR

Summary Bit to

Status Byte

Positive/Negative
Transition Filter

latch

latch

latch

latch

=1

=1

=1

=1

=1

=1

=1

=1
HP E1422 Command Reference  337Chapter 6



STATus
Initializing the
Status System

The following table shows the effect of Power-on, *RST, *CLS and STATus:PRESet 
on the status system register settings.

Subsystem Syntax STATus
:OPERation

:CONDition?
:ENABle  <enable_mask>
:ENABle?

 [:EVENt]?
:NTRansition <transition_mask>
:NTRansition?
:PTRansition <transition_mask>
:PTRansition?

:PRESet
:QUEStionable

:CONDition?
:ENABle  <enable_mask>
:ENABle?

 [:EVENt]?
:NTRansition <transition_mask>
:NTRansition?
:PTRansition <transition_mask>
:PTRansition?

The Status system contains four status groups

• Operation Status Group
• Questionable Data Group
• Standard Event Group
• Status Byte Group

This SCPI STATus subsystem communicates with the first two groups while 
IEEE-488.2 Common Commands (documented later in this chapter) communicate 
with Standard Event and Status Byte Groups.

SCPI 
Transition 

Filters

SCPI 
Enable 

Registers

SCPI Event 
Registers

IEEE 488.2 
Registers 

ESE and SRE

IEEE 488.2 
Registers 

SESR and STB

Power-on preset preset clear clear clear

*RST none none none none none

*CLS none none clear none clear

STAT:PRESET preset preset none none none
338 HP E1422 Command Reference  Chapter 6



STATus
Weighted Bit
Values

Register queries are returned using decimal weighted bit values. Enable registers can 
be set using decimal, hex, octal, or binary. The following table can be used to help 
set Enable registers using decimal, and decode register queries.

Status System Decimal Weighted Bit Values

The Operation Status Group
The Operation Status Group indicates the current operating state of the HP E1422. 
The bit assignments are:

 

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the decimal weighted value of the bits set 
in the Condition register.

Comments • The Condition register reflects the real-time state of the status signals. The 
signals are not latched; therfore past events are not retained in this register (see 
STAT:OPER:EVENT?).

bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

value always 0 16,384 8,192 4,096 2,048 1,024 512 256 128 64 32 16 8 4 2 1

Bit # dec value hex value Bit Name Description

0 1 000116 Calibrating Set by CAL:TARE, and CAL:SETup. Cleared by 
CAL:TARE?, and CAL:SETup?. Set while *CAL? 
executes and reset when *CAL? completes.  Set by 
CAL:CONFIG:VOLT or  CAL:CONFIG:RES, cleared by 
CAL:VAL:VOLT or  CAL:VAL:RES.

1-3 Not used

4 16 001016 Measuring Set when instrument INITiated. Cleared when 
instrument returns to Trigger Idle State.

5-7 Not used

8 256 010016 Scan Complete Set when each pass through a Scan List completed 
(may not indicate all measurements have been taken 
when TRIG:COUNT >1). 

9 512 020016 SCP Trigger An SCP has sourced a trigger event (future 
HP 1422 SCPs)

10 1024 040016 FIFO Half Full The FIFO contains at least 32,768 readings

11 2048 080016 Algorithm Interrupted The interrupt() function was called in an algorithm

12-15 Not used
HP E1422 Command Reference  339Chapter 6



STATus
• Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: *CAL?, CAL:ZERO, INITiate[:IMMediate], 
STAT:OPER:EVENT?, STAT:OPER:ENABLE, STAT:OPER:ENABLE?

• *RST Condition: No Change

• Use VXIplug&play function: hpe1422_operCond_Q(...)

Usage STATUS:OPERATION:CONDITION? Enter statement will return value from 
condition register

STATus:OPERation:ENABle

STATus:OPERation:ENABle  <enable_mask> sets bits in the Enable register that 
will enable corresponding bits from the Event register to set the Operation summary 
bit.

Parameters

Comments • Enable_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• VXI Interrupts: When Operation Status Group  bits 4, 8, 9, 10, or 11 are enabled, 
VXI card interrupts will occur as follows:

When the event corresponding to bit 4 occurs and then is cleared,  the card 
will generate a VXI interrupt. When the event corresponding to bit 8, 9, 10, 
or 11 occurs, the card will generate a VXI interrupt.  

NOTE: In C-SCPI, the C-SCPI overlap mode must be on for VXIbus 
interrupts to occur.

• Related Commands: *STB?, SPOLL, STAT:OPER:COND?, 
STAT:OPER:EVENT?, STAT:OPER:ENABLE?

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STAT:OPER:ENABLE  1 Set bit 0 in the Operation Enable register

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable_mask numeric (uint16) 0-32767 none
340 HP E1422 Command Reference  Chapter 6



STATus
STATus:OPERation:ENABle?

STATus:OPERation:ENABle? returns the value of bits set in the Operation Enable 
register.

Comments • Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: *STB?, SPOLL, STAT:OPER:COND?, 
STAT:OPER:EVENT?, STAT:OPER:ENABLE

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage STAT:OPER:ENABLE? Enter statement returns current value of 
bits set in the Operation Enable register

STATus:OPERation[:EVENt]?

STATus:OPERation[:EVENt]? returns the decimal weighted value of the bits set in 
the Event register.

Comments • When using the Operation Event register to cause SRQ interrupts, 
STAT:OPER:EVENT? must be executed after an SRQ to re-enable future 
interrupts. 

• Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: *STB?, SPOLL, STAT:OPER:COND?, 
STAT:OPER:ENABLE, STAT:OPER:ENABLE?

• Cleared By: *CLS, power-on, and by reading the register.

• *RST Condition: No change

• Use VXIplug&play function: hpe1422_operEvent_Q(...)

Usage STAT:OPER:EVENT? Enter statement will return the value of 
bits set in the Operation Event register

STAT:OPER? Same as above

STATus:OPERation:NTRansition

STATus:OPERation:NTRansition  <transition_mask> sets bits in the Negative 
Transition Filter (NTF) register. When a bit in the NTF register is set to one, the 
corresponding bit in the Condition register must change from a one to a zero in order 
to set the corresponding bit in the Event register. When a bit in the NTF register is 
zero, a negative transition of the Condition register bit will not change the Event 
HP E1422 Command Reference  341Chapter 6



STATus
register bit.

Parameters

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• If both the STAT:OPER:PTR and STAT:OPER:NTR registers have a 
corresponding bit set to one, any transition, positive or negative will set the 
corresponding bit in the Event register.

• If neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a 
corresponding bit set to one, transitions from the Condition register will have 
no effect on the Event register. 

• Related Commands: STAT:OPER:NTR?, STAT:OPER:PTR

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STAT:OPER:NTR  16 When "Measuring" bit goes false, set bit 4 
in Status Operation Event register.

STATus:OPERation:NTRansition?

STATus:OPERation:NTRansition? returns the value of bits set in the Negative 
Transition Filter (NTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: STAT:OPER:NTR

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage STAT:OPER:NTR? Enter statement returns current value of 
bits set in the NTF register

STATus:OPERation:PTRansition

STATus:OPERation:PTRansition  <transition_mask> sets bits in the Positive 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

transition_mask numeric (uint16) 0-32767 none
342 HP E1422 Command Reference  Chapter 6



STATus
Transition Filter (PTF) register. When a bit in the PTF register is set to one, the 
corresponding bit in the Condition register must change from a zero to a one in order 
to set the corresponding bit in the Event register. When a bit in the PTF register is 
zero, a positive transition of the Condition register bit will not change the Event 
register bit.

Parameters

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• If both the STAT:OPER:PTR and STAT:OPER:NTR registers have a 
corresponding bit set to one, any transition, positive or negative will set the 
corresponding bit in the Event register.

• If neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a 
corresponding bit set to one, transitions from the Condition register will have 
no effect on the Event register. 

• Related Commands: STAT:OPER:PTR?, STAT:OPER:NTR

•  Set to all ones by: STAT:PRESet and power-on.

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STAT:OPER:PTR  16 When "Measuring" bit goes true, set bit 4 
in Status Operation Event register.

STATus:OPERation:PTRansition?

STATus:OPERation:PTRansition? returns the value of bits set in the Positive 
Transition Filter (PTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: STAT:OPER:PTR

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage STAT:OPER:PTR? Enter statement returns current value of 
bits set in the PTF register

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

transition_mask numeric (uint16) 0-32767 none
HP E1422 Command Reference  343Chapter 6



STATus
STATus:PRESet

STATus:PRESet sets the Operation Status Enable and Questionable Data Enable 
registers to 0. After executing this command, none of the events in the Operation 
Event or Questionable Event registers will be reported as a summary bit in either the 
Status Byte Group or Standard Event Status Group. STATus:PRESet does not clear 
either of the Event registers.

Comments • Related Commands: *STB?, SPOLL, STAT:OPER:ENABLE, 
STAT:OPER:ENABLE?, STAT:QUES:ENABLE, STAT:QUES:ENABLE?

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STAT:PRESET Clear both of the Enable registers

The Questionable Data Group
The Questionable Data Group indicates when errors are causing lost or questionable 
data. The bit assignments are:

 STATus:QUEStionable:CONDition?

STATus:QUEStionable:CONDition? returns the decimal weighted value of the bits 
set in the Condition register.

Bit # dec value hex value Bit Name Description

0-7 Not used

8 256 010016 Calibration Lost At *RST or Power-on Control Processor has found a 
checksum error in the Calibration Constants.  Read 
error(s) with SYST:ERR? and re-calibrate area(s) that 
lost constants.

9 512 020016 Trigger Too Fast Scan not complete when another trigger event 
received.

10 1024 040016 FIFO Overflowed Attempt to store more than 65,024 readings in FIFO.

11 2048 080016 Over voltage Detected 
on Input

If the input protection jumper has not been cut, the input 
relays have been opened and *RST is required to reset 
the module.  Overvoltage will also generate an error.

12 4096 100016 VME Memory 
Overflow

The number of readings taken exceeds VME memory 
space.

13 8192 200016 Setup Changed Channel Calibration in doubt because SCP setup may 
have changed since last *CAL? or CAL:SETup 
command. (*RST always sets this bit).

14-15 Not used
344 HP E1422 Command Reference  Chapter 6



STATus
Comments • The Condition register reflects the real-time state of the status signals. The 
signals are not latched; therfore past events are not retained in this register (see 
STAT:QUES:EVENT?).

• Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: CAL:VALUE:RESISTANCE, 
CAL:VALUE:VOLTAGE, STAT:QUES:EVENT?, STAT:QUES:ENABLE, 
STAT:QUES:ENABLE?

• *RST Condition: Bit 13, "Setup Changed" is set to 1

• Use VXIplug&play function: hpe1422_quesCond_Q(...)

Usage STATUS:QUESTIONABLE:CONDITION? Enter statement will return value from 
condition register

STATus:QUEStionable:ENABle

STATus:QUEStionable:ENABle  <enable_mask> sets bits in the Enable register 
that will enable corresponding bits from the Event register to set the Questionable 
summary bit.

Parameters

Comments • Enable_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• VXI Interrupts: When bits 9, 10, or 11 are enabled and C-SCPI overlap mode is 
on (or if you are using non-compiled SCPI), VXI card interrupts will be enabled.  
When the event corresponding to bit 9, 10, or 11 occurs,  the card will generate 
a VXI interrupt. 

• Related Commands: *STB?, SPOLL, STAT:QUES:COND?, 
STAT:QUES:EVENT?, STAT:QUES:ENABLE?

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STAT:QUES:ENABLE  128 Set bit 7 in the Questionable Enable 
register

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

enable_mask numeric (uint16) 0-32767 none
HP E1422 Command Reference  345Chapter 6



STATus
STATus:QUEStionable:ENABle?

STATus:QUEStionable:ENABle? returns the value of bits set in the Questionable 
Enable register.

Comments • Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: *STB?, SPOLL, STAT:QUES:COND?, 
STAT:QUES:EVENT?, STAT:QUES:ENABLE

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage STAT:QUES:ENABLE? Enter statement returns current value of 
bits set in the Questionable Enable 
register

STATus:QUEStionable[:EVENt]?

STATus:QUEStionable[:EVENt]? returns the decimal weighted value of the bits set 
in the Event register.

Comments • When using the Questionable Event register to cause SRQ interrupts, 
STAT:QUES:EVENT? must be executed after an SRQ to re-enable future 
interrupts. 

• Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Cleared By: *CLS, power-on, and by reading the register.

• Related Commands: *STB?, SPOLL, STAT:QUES:COND?, 
STAT:QUES:ENABLE, STAT:QUES:ENABLE?

• Use VXIplug&play function: hpe1422_quesEvent_Q(...)

Usage STAT:QUES:EVENT? Enter statement will return the value of 
bits set in the Questionable Event register

STAT:QUES? Same as above

STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition  <transition_mask> sets bits in the Negative 
Transition Filter (NTF) register. When a bit in the NTF register is set to one, the 
corresponding bit in the Condition register must change from a one to a zero in order 
to set the corresponding bit in the Event register. When a bit in the NTF register is 
zero, a negative transition of the Condition register bit will not change the Event 
register bit.
346 HP E1422 Command Reference  Chapter 6



STATus
Parameters

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• If both the STAT:QUES:PTR and STAT:QUES:NTR registers have a 
corresponding bit set to one, any transition, positive or negative will set the 
corresponding bit in the Event register.

• If neither the STAT:QUES:PTR or STAT:QUES:NTR registers have a 
corresponding bit set to one, transitions from the Condition register will have 
no effect on the Event register. 

• Related Commands: STAT:QUES:NTR?, STAT:QUES:PTR

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STAT:QUES:NTR  1024 When "FIFO Overflowed" bit goes false, 
set bit 10 in Status Questionable Event 
register.

STATus:QUEStionable:NTRansition?

STATus:QUEStionable:NTRansition? returns the value of bits set in the Negative 
Transition Filter (NTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: STAT:QUES:NTR

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage STAT:QUES:NTR? Enter statement returns current value of 
bits set in the NTF register

STATus:QUEStionable:PTRansition

STATus:QUEStionable:PTRansition  <transition_mask> sets bits in the Positive 
Transition Filter (PTF) register. When a bit in the PTF register is set to one, the 
corresponding bit in the Condition register must change from a zero to a one in order 
to set the corresponding bit in the Event register. When a bit in the PTF register is 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

transition_mask numeric (uint16) 0-32767 none
HP E1422 Command Reference  347Chapter 6



STATus
zero, a positive transition of the Condition register bit will not change the Event 
register bit.

Parameters

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• If both the STAT:QUES:PTR and STAT:QUES:NTR registers have a 
corresponding bit set to one, any transition, positive or negative will set the 
corresponding bit in the Event register.

• If neither the STAT:QUES:PTR or STAT:QUES:NTR registers have a 
corresponding bit set to one, transitions from the Condition register will have 
no effect on the Event register. 

• Related Commands: STAT:QUES:PTR?, STAT:QUES:NTR

•  Set to all ones by: STAT:PRESet and power-on.

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage STAT:QUES:PTR  1024 When "FIFO Overflowed" bit goes true, 
set bit 10 in Status Operation Event 
register.

STATus:QUEStionable:PTRansition?

STATus:QUEStionable:PTRansition? returns the value of bits set in the Positive 
Transition Filter (PTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The data type is uint16.

• Related Commands: STAT:QUES:PTR

• *RST Condition: No change

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Usage STAT:OPER:PTR? Enter statement returns current value of 
bits set in the PTF register

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

transition_mask numeric (uint16) 0-32767 none
348 HP E1422 Command Reference  Chapter 6



SYSTem
SYSTem

The SYSTem subsystem is used to query for error messages, types of Signal 
Conditioning Plug-ons (SCPs), and the SCPI version currently implemented.

Subsystem Syntax SYSTem
:CTYPe?  (@<channel>)
:ERRor?
:VERSion?

SYSTem:CTYPe?

SYSTem:CTYPe?  (@<channel>) returns the identification of the Signal 
Conditioning Plug-On installed at the specified channel.

Parameters

Comments • channel must specify a single channel only.

• Returned Value:  An example of the response string format is:
HEWLETT-PACKARD,E1422 Option <option number and description> SCP,0,0

The data type is string. For specific response string, refer to the appropriate SCP 
manual. If <channel> specifies a position where no SCP is installed, the module 
returns the response string:
0,No SCP at this Address,0,0

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage SYST:CTYPE?  (@100) return SCP type install at channel 0

SYSTem:ERRor?

SYSTem:ERRor? returns the latest error entered into the Error Queue.

Comments • SYST:ERR? returns one error message from the Error Queue (returned error is 
removed from queue). To return all errors in the queue, repeatedly execute 
SYST:ERR? until the error message string = +0, "No error"

• Returned Value: Errors are returned in the form:
±<error number>, "<error message string>"

• RST Condition: Error Queue is empty.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

channel channel list (string) 100 - 163 none
HP E1422 Command Reference  349Chapter 6



SYSTem
• Use VXIplug&play function: hpe1422_error_query(...)

Usage SYST:ERR? returns the next error message from the 
Error Queue

SYSTem:VERSion?

SYSTem:VERSion?  returns the version of SCPI this instrument complies with.

Comments • Returned Value: String "1990". The data type is string.

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage SYST:VER? Returns "1990"
350 HP E1422 Command Reference  Chapter 6



TRIGger
TRIGger

The TRIGger command subsystem controls the behavior of the trigger system once 
it is initiated (see INITiate command subsystem). 

Figure 6-6 shows the overall Trigger System model. The shaded area shows the ARM 
subsystem portion.

Figure 6-6. Logical Trigger Model

Caution Algorithms execute at most once per trigger event. Should 
trigger events cease (external trigger source stops) or are 
ignored ( TRIGger:COUNt reached), algorithms execution will 
stop. In this case control outputs are left at the last value set by 
the algorithms. Depending on the process, this uncontrolled 
situation could even be dangerous. Make certain that you have 
put your process into a safe state before you halt (stop 
triggering) execution of a controlling algorithm.

The HP E1535 Watchdog Timer SCP was specifically developed 
to automatically signal that an algorithm has stopped 
controlling a process. Use of the Watchdog Timer is 
recommended for critical processes.
HP E1422 Command Reference  351Chapter 6



TRIGger
Event Sequence Figure 6-7 shows how the module responds to various trigger/arm configurations.

Figure 6-7. Trigger/Scan Sequence Diagram

Subsystem Syntax
TRIGger

:COUNt  <trig_count>
 :COUNt?
 [:IMMediate]

:SOURce  BUS | EXTernal | HOLD | SCP | IMMediate | TIMer | TTLTrg<n>
:SOURce? 
:TIMer

[:PERiod]  <trig_interval>
[:PERiod]?

Trigger Idle
State

Initiated
State

TRIG:SOUR
TIMer?

ABORT

Trig. Counter=
TRIG:COUNT?

NOTE: For continuous algorithm
execution use TRIG:COUNT 0 or INF.
This is the default setting.

Waiting for
Arm

Reset and
Start Timer Waiting for

Trigger

Execute Control
Loop Algorithm

Update Control
Outputs

Scan Inputs
and Increment
Trig. Counter

no

no

no

yes

yes

yes

ARM Event

Trigger Event
352 HP E1422 Command Reference  Chapter 6



TRIGger
TRIGger:COUNt

TRIGger:COUNt  <trig_count> sets the number of times the module can be 
triggered before it returns to the Trigger Idle State. The default count is 1. Note that 
this default was chosen to make testing data aquisition scan list easier (only one scan 
list woth of data in FIFO per trigger). For algorithm operation, you will probably 
want to change the count to INFinite to accepts continuous triggers. See Figure 6-7 
on page 352 

Parameters

Comments • When trig_count is set to 0 or INF, the trigger counter is disabled. Once INITiated 
the module will return to the Waiting For Trigger State after each trigger event. 
The ABORT (preferred) and *RST commands will return the module to the 
Trigger Idle State. ABORT is preferred since *RST also returns other module 
configurations to their default settings.

• The default count is 0

• Related Commands: TRIG:COUNT?

• *RST Condition: TRIG:COUNT 0

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage TRIG:COUNT  10 Set the module to make 10 passes all 
enabled algorithms.

TRIG:COUNT  0 Set the module to accept unlimited 
triggers (the default)

TRIGger:COUNt?

TRIGger:COUNt? returns the currently set trigger count.

Comments • If TRIG:COUNT? returns 0, the trigger counter is disabled and the module will 
accept an unlimited number of trigger events.

• Returned Value: Numeric 0 through 65,535. The data type is int32.

• Related Commands: TRIG:COUNT

• *RST Condition: TRIG:COUNT? returns 0

• Send with VXIplug&play Function: hpe1422_cmdInt32_Q(...)

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

Trig_count numeric (uint16)
(string)

0 to 65535 | INF none
HP E1422 Command Reference  353Chapter 6



TRIGger
Usage TRIG:COUNT? Query for trigger count setting
enter statement Returns the TRIG:COUNT setting

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes one trigger when the module is set to the TRIG:SOUR 
BUS or TRIG:SOUR HOLD mode.

Comments • This command is equivalent to the *TRG common command or the IEEE-488.2 
"GET" bus command.

• Related Commands: TRIG:SOURCE

• Use VXIplug&play function: hpe1422_trigImm(...)

Usage TRIG:IMM Use TRIGGER to start a measurement 
scan

TRIGger:SOURce

TRIGger:SOURce  <trig_source> configures the trigger system to respond to the 
trigger event.

Parameters

Comments • The following table explains the possible choices.

Note The ARM system only exists while TRIG:SOUR is TIMer. When TRIG:SOUR is 
not TIMer, SCPI compatibility requires that ARM:SOUR be IMM or an Error 

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

trig_source discrete (string) BUS | EXT | HOLD | IMM | SCP | TIM 
| TTLTrg<n>

none

BUS TRIGger[:IMMediate], *TRG, GET (for HP-IB)

EXTernal “TRG” signal on terminal module

HOLD TRIGger[:IMMediate]

IMMediate The trigger event is always satisfied.

SCP SCP Trigger Bus (future HP or SCP Breadboard)

TIMer The internal trigger timer

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)
354 HP E1422 Command Reference  Chapter 6



TRIGger
-221,"Settings conflict" will be generated.

• While TRIG:SOUR is IMM, you need only INITiate the trigger system to start 
a measurement scan.

• When Accepted: Before INIT only.

• Related Commands: ABORt, INITiate, *TRG

• *RST Condition: TRIG:SOUR TIMER

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage TRIG:SOUR  EXT Hardware trigger input at Connector 
Module

TRIGger:SOURce? 

TRIGger:SOURce? returns the current trigger source configuration.

• Returned Value: Discrete; one of BUS, EXT, HOLD, IMM, SCP, TIM, or 
TTLT0 through TTLT7. The data type is string. See the TRIG:SOUR command 
for more response data information.

• Send with VXIplug&play Function: hpe1422_cmdString_Q(...)

Usage TRIG:SOUR? ask HP E1422 to return trigger source 
configuration

TRIGger:TIMer[:PERiod]

TRIGger:TIMer[:PERiod]  <trig_interval> sets the interval between scan triggers. 
Used with the TRIG:SOUR TIMER trigger mode.

Parameters

Comments • In order for the TRIG:TIMER to start it must be Armed. For information on 
timer arming see the ARM subsystem in this command reference.

• The default interval is 10E-3 seconds. interval may be specified in seconds, 
milliseconds (ms), or microseconds (us). For example; .0016, 1.6ms or 1600us. 
The resolution for interval is 100 µ second.

Parameter
Name

Parameter
Type

Range of
Values

Default 
Units

trig_interval numeric (float32)
(string)

100E-6 to 6.5536 |
MIN | MAX

seconds
HP E1422 Command Reference  355Chapter 6



TRIGger
• TRIG:TIMer periods shorter than the value returned from the 
ALG[:EXPL]:TIME? command may result in "Trigger too fast"errors.

• When Accepted: Before INIT only.

• Related Commands: TRIG:SOUR TIMER, ARM:SOUR, ARM:IMM, INIT, 
TRIG:SOUR?, ALG:EXPL:TIME?

• *RST Condition: TRIG:TIM 1.0E-3

• Send with VXIplug&play Function: hpe1422_cmd(...)

Usage TRIG:TIMER  1.0E-1 Set the module to scan inputs and execute 
all algorithms every 100 mS

TRIG:TIMER  1 Set the module to scan inputs and execute 
all algorithms every second

TRIGger:TIMer[:PERiod]?

TRIGger:TIMer[:PERiod]? returns the currently set Trigger Timer interval.

Comments • Returned Value: Numeric 1 through 6.5536. The data type is float32.

• Related Commands: TRIG:TIMER

• *RST Condition: 1.0E-4

• Send with VXIplug&play Function: hpe1422_cmdReal64_Q(...)

Usage TRIG:TIMER? Query trig timer
enter statement Returns the timer setting
356 HP E1422 Command Reference  Chapter 6



IEEE-488.2 Common Command Reference
IEEE-488.2 Common Command Reference

*CAL? 

*CAL? Calibration command. The calibration command causes the Channel 
Calibration function to be performed for every module channel. The Channel 
Calibration function includes calibration of A/D Offset, and Gain  and Offset for all 
64 channels. This calibration is accomplished using internal calibration references. 
The *CAL? command causes the module to calibrate A/D offset and gain, and all 
channel offsets. This may take many minutes to complete. The actual time it will take 
your HP E1422 to complete *CAL? depends on the mix of SCPs installed. *CAL 
performs literally hundreds of measurements of the internal calibration sources for 
each channel and must allow 17 time constants of settling wait each time a filtered 
channel’s calibrations source value is changed. The *CAL procedure is internally 
very sophisticated and results in an extremely well calibrated module.

To perform Channel Calibration on multiple HP E1422s, use 
CAL:SETup/CAL:SETup?. 

Note that the scope of the *CAL? and CAL:SETup commands is limited to the 
HP E1422A and the SCPs it contains. They do not calibrate Remote Signal 
Conditioning Units like the HP E1529A. You must use CAL:REMote? in addition 
to *CAL?/CAL:SETup for RSC units.

• Returned Value: 

The data type for this returned value is int16.

• When Accepted: Not while INITiated

• Related Commands: CALibration:SETup, CALibration:SETup?, 
CALibration:STORe ADC

• CAL:STOR ADC stores the calibration constants for *CAL? and CAL:SETup 
into non-volatile memory.

• Executing this command does not alter the module’s programmed state 
(function, range, etc.). It does however clear STAT:QUES:COND? register bit 
13.

• Send with VXIplug&play Function: hpe1422_cmdInt16_Q(...)

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See “Error Messages” on page 407 
HP E1422 Command Reference  357Chapter 6



IEEE-488.2 Common Command Reference

 are 

s are 
Note If Open Transducer Detect (OTD) is enabled when *CAL? is executed, the module 
will disable OTD, wait 1 minute to allow channels to settle, perform the calibration, 
and then re-enable OTD. If your program turns off OTD before executing *CAL?, it 
should also wait 1 minute for settling.

*CLS

*CLS Clear Status Command. The *CLS command clears all status event registers 
(Standard Event Status Event Register, Standard Operation Status Event Register, 
Questionable Data Event Register) and the instrument’s error queue. This clears the 
corresponding summary bits (bits 3, 5, & 7) in the Status Byte Register. *CLS does 
not affect the enable bits in any of the status register groups. (The SCPI command 
STATus:PRESet does clear the Operation Status Enable and Questionable Data 
Enable registers.)  *CLS disables the Operation Complete function (*OPC command) 
and the Operation Complete Query function (*OPC? command).

Send with VXIplug&play Function: hpe1422_cmd(...)

*DMC

*DMC  <name>,<cmd_data> Define Macro Command. Assigns one, or a sequence 
of commands to a named macro.

The command sequence may be composed of SCPI and/or Common commands.

 <name> may be the same as a SCPI command, but may not be the same as a Common 
command. When a SCPI named macro is executed, the macro rather than the SCPI 
command is executed. To regain the function of the SCPI command, execute *EMC 
0 command.

<cmd_data> is sent as arbitrary block program data (see “Arbitrary Block Program 
and Response Data” on page 205). 

*EMC

*EMC <enable> Enable Macro Command. When <enable> is non-zero, macros
enabled. When <enable> is zero, macros are disabled.

*EMC?

*EMC? Enable Macro query. Returns either 1 (macros are enabled), or 0 (macro
disabled).
358 HP E1422 Command Reference  Chapter 6



IEEE-488.2 Common Command Reference

ing 
*ESE

*ESE  <mask> Standard Event Status Enable Register Command. Enables one or 
more events in the Standard Event Status Register to be reported in bit 5 (the Standard 
Event Status Summary Bit) of the Status Byte Register. You enable an event by 
specifying its decimal weight for <mask>. To enable more than one event (bit), 
specify the sum of the decimal weights. The data type for <mask> is int16.

Send with VXIplug&play Function: hpe1422_cmd(...)

*ESE?

*ESE? Standard Event Status Enable Query. Returns the weighted sum of all enabled 
(unmasked) bits in the Standard Event Status Register.  The data type for this returned 
value is int16.

*ESR?

*ESR? Standard Event Status Register Query. Returns the weighted sum of all set 
bits in the Standard Event Status Register. After reading the register, *ESR? clears 
the register. The events recorded in the Standard Event Status Register are 
independent of whether or not those events are enabled with the *ESE command to 
set the Standard Event Summary Bit in the Status Byte Register. The Standard Event 
bits are described in the *ESE command. The data type for this returned value is int16.

*GMC?

*GMC? <name> Get Macro query. Returns arbitrary block response data which 
contains the command or command sequence defined for <name>. For more 
information see “Arbitrary Block Program and Response Data” on page 205.

*IDN?

*IDN? Identity. Returns the device identity. The response consists of the follow
four fields (fields are separated by commas):

• Manufacturer
• Model Number
• Serial Number (returns 0 if not available)
• Driver Revision (returns 0 if not available)

Bit # 7 6 5 4 3 2 1 0

Weighted Value 128 64 32 16 8 4 2 1

Event power-On User 
Request

Command 
Error

Execution 
Error

Device Dependent 
Error

Query 
Error

Request 
Control

Operation 
Complete
HP E1422 Command Reference  359Chapter 6



IEEE-488.2 Common Command Reference
*IDN? returns the following response strings depending on model and options:
HEWLETT-PACKARD,E1422A,<serial number>,<revision number>

• The data type for this returned value is string.

Note The revision will vary with the revision of the driver software installed in your system. 
This is the only indication of which version of the driver is installed.

*LMC?

*LMC? Learn Macros query. Returns a quoted string name for each currently defined 
macro. If more than one macro is defined, the strings are separated by commas (,). If 
no macro is defined, *LMC? returns a null string.

*OPC

*OPC Operation Complete. Causes an instrument to set bit 0 (Operation Complete 
Message) in the Standard Event Status Register when all pending operations invoked 
by SCPI commands have been completed. By enabling this bit to be reflected in the 
Status Byte Register (*ESE 1 command), you can ensure synchronization between 
the instrument and an external computer or between multiple instruments.

Note Do not use *OPC to determine when the CAL:SETUP or CAL:TARE commands 
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

Send with VXIplug&play Function: hpe1422_cmd(...)

*OPC?

*OPC? Operation Complete Query. Causes an instrument to place a 1 into the 
instrument’s output queue when all pending instrument operations invoked by SCPI 
commands are finished. By requiring your computer to read this response before 
continuing program execution, you can ensure synchronization between one or more 
instruments and the computer.  The data type for this returned value is int16.

Note Do not use *OPC? to determine when the CAL:SETUP or CAL:TARE commands 
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

If an algorithm is running contiuously, then *OPC? will never return (will "hang"). 
In this case, send a device clear, then *RST or ABORT to stop the algorithm. *OPC? 
360 HP E1422 Command Reference  Chapter 6



IEEE-488.2 Common Command Reference
must be used with care when the HP E1422A is INITiated.

*PMC

*PMC Purge Macros Command. Purges all currently defined macros.

*RMC

*RMC <name> Remove individual Macro Command. Removes the named macro 
command.

*RST

*RST Reset Command. Resets the HP E1422 as follows:

• Erases all algorithms
• All elements in the Input Channel Buffer (I100 - I163) set to zero.
• All elements in the Output Channel Buffer (O100-O163) set to zero
• Defines all Analog Input channels to measure voltage 
• Configures all Digital I/O channels as inputs
• Resets HP E1531 and HP E1532 Analog Output SCP channels to zero

• When Accepted: Not while INITiated

• Use VXIplug&play function: hpe1422_reset(...)

WARNING Note the change in character of output channels when *RST is 
received. Digital outputs change to inputs (appearing now is 
1kW to +3v, a TTL one), and analog control outputs change to 
zero (current or voltage). Keep these changes in mind when 
applying the HP E1422 to your system, or engineering a system 
for operation with the HP E1422. Also note that each analog 
output channels disconnects for 5-6 milliseconds to discharge 
to zero at each *RST.

It isn’t difficult to have the HP E1422 signal your system when 
*RST is executed. A solution that can provide signals for 
several types of failures as well as signaling when *RST is 
executed is the HP E1535 Watchdog Timer SCP. The Watchdog 
SCP even has an input through which you can command all of 
the HP E1422’s channels to disconnect from your system.

• Sets the trigger system as follows:
-- TRIGGER:SOURCE TIMER
-- TRIGGER:TIMER 10E-3
HP E1422 Command Reference  361Chapter 6



IEEE-488.2 Common Command Reference
-- TRIGGER:COUNT 0 (infinite)
-- ARM:SOURCE IMMEDIATE

• SAMPLE:TIMER 40E-6
• Aborts all pending operations, returns to Trigger Idle state
• Disables the *OPC and *OPC? modes
• MEMORY:VME:ADDRESS 240000; MEMORY:VME:STATE OFF; 

MEMORY:VME:SIZE 0
• Sets STAT:QUES:COND? bit 13

*RST does not affect:

• Calibration data
• The output queue
• The Service Request Enable (SRE) register
• The Event Status Enable (ESE) register

*SRE

*SRE  <mask> Service Request Enable. When a service request event occurs, it sets 
a corresponding bit in the Status Byte Register (this happens whether or not the event 
has been enabled (unmasked) by *SRE). The *SRE command allows you to identify 
which of these events will assert an HP-IB service request (SRQ). When an event is 
enabled by *SRE and that event occurs, it sets a bit in the Status Byte Register and 
issues an SRQ to the computer (sets the HP-IB SRQ line true). You enable an event 
by specifying its decimal weight for <mask>. To enable more than one event, specify 
the sum of the decimal weights. Refer to "The Status Byte Register"r for a table 
showing the contents of the Status Byte Register.  The data type for <mask> is int16.

Send with VXIplug&play Function: hpe1422_cmd(...)

*SRE?

*SRE? Status Register Enable Query. Returns the weighted sum of all enabled 
(unmasked) events (those enabled to assert SRQ) in the Status Byte Register.  The 
data type for this returned value is int16.

*STB?

*STB? Status Byte Register Query. Returns the weighted sum of all set bits in the 
Status Byte Register. Refer to the *ESE command earlier in this chapter for a table 
showing the contents of the Status Byte Register. *STB? does not clear bit 6 (Service 

Bit # 7 6 5 4 3 2 1 0

Weighted Value 128 64 32 16 8 4 2 1

Event Operation 
Status

Request 
Service

Standard 
Event

Message 
Available

Questionable 
Status

not used not used not used
362 HP E1422 Command Reference  Chapter 6



IEEE-488.2 Common Command Reference
Request). The Message Available bit (bit 4) may be cleared as a result of reading the 
response to *STB?.  The data type for this returned value is int16.

• Use VXIplug&play function: hpe1422_readStatusByte_Q(...)

Send with VXIplug&play Function: hpe1422_cmd(...)

*TRG

*TRG Trigger. Triggers an instrument when the trigger source is set to bus 
(TRIG:SOUR BUS command) and the instrument is in the Wait for Trigger state.

Send with VXIplug&play Function: hpe1422_cmd(...)

*TST?

*TST? Self-Test. Causes an instrument to execute extensive internal self-tests and 
returns a response showing the results of the self-test.

Notes 1. During the first 5 minutes after power is applied, *TST? may fail.  Allow the 
module to warm-up before executing *TST?.

2. Module must be screwed securely to mainframe.

Comments • Use VXIplug&play function: hpe1422_self_test(...)

• Returned Value: 

• IF error 3052 ’Self test failed. Test info in FIFO’ is returned. A FIFO value of 1 
through 99 or >=300 is a failed test number. A value of 100 through 163 is a 
channel number for the failed test. A value of 200 through 204 is an A/D range 
number for the failed test where 200=.0625, 201=.25V, 202=1V, 203=4V, and 
204=16V ranges. For example DATA:FIFO? returns the values 72 and 108. This 
indicates that test number 72 failed on channel 8.

Test numbers 20, 30-37, 72, 74-76, and 80-93 may indicate a problem with a 
Signal Conditioning Plug-on.

For tests 20, and 30-37, remove all SCPs and see if *TST? passes. If so, replace 
SCPs one at a time until you find the one causing the problem.

Value Meaning Further Action

0 *TST? OK None

-1  *TST? Error Query the Error Queue (SYST:ERR?)
for error 3052. See explanation below.
HP E1422 Command Reference  363Chapter 6



IEEE-488.2 Common Command Reference

1 for 
For tests 72, 74-76, and 80-93, try to re-seat the SCP that the channel number(s) 
points to, or move the SCP and see if the failure(s) follow the SCP. If the 
problems move with the SCP, replace the SCP.

These are the only tests where the user should troubleshoot a problem. Other 
tests which fail should be referred to qualified repair personnel.

Note Executing *TST? returns the module to its *RST state. *RST causes the FIFO data 
format to return to its default of ASC,7. If you want to read the FIFO for  *TST? 
diagnostic information and you want that data in other than the ASCII,7 format, be 
certain to set the data FIFO format to the desired format (FORMAT command) after 
completion of *TST? but before executing a SENSE:DATA:FIFO: query command.

 

• The data type for this returned value is int16.

• Following *TST?, the module is placed in the *RST state. This returns many of 
the module's programmed states to their defaults. See “*RST” on page 36
a list of the module's default states.

• *TST? performs the following tests on the HP E1422 and installed Signal 
Conditioning Plug-ons:

DIGITAL TESTS:

Test# Description

1-3: Writes and reads patterns to registers via A16 & A24
4-5: Checks FIFO and CVT
6: Checks measurement complete (Measuring) status bit
7: Checks operation of FIFO half and FIFO full IRQ generation
8-9: Checks trigger operation 

ANALOG FRONT END DIGITAL TESTS:

Test# Description

20: Checks that SCP ID makes sense
30-32: Checks relay driver and fet mux interface with EU CPU
33,71: Checks opening of all relays on power down or input overvoltage
34-37: Check fet mux interface with A/D digital

ANALOG TESTS:

Test# Description

40-42: Checks internal voltage reference

ANALOG TESTS: (continued)
364 HP E1422 Command Reference  Chapter 6



IEEE-488.2 Common Command Reference
Test# Description

43-44: Checks zero of A/D, internal cal source and relay drives
45-46: Checks fine offset calibration DAC
47-48: Checks coarse offset calibration DAC
49: Checks internal + and -15V supplies
50-53: Checks internal calibration source
54-55: Checks gain calibration DAC
56-57: Checks that autorange works
58-59: Checks internal current source
60-63: Checks front end and A/D noise and A/D filter
64: Checks zeroing of coarse and fine offset calibration DACs
65-70: Checks current source and CAL BUS relay and relay drives and OHM

relay drive
71: See 33 
72-73: Checks continuity through SCPs, bank relays and relay drivers
74: Checks open transducer detect
75: Checks current leakage of the SCPs
76: Checks voltage offset of the SCPs
80: Checks mid-scale strain dac output. Only reports first channel of SCP.
81: Checks range of strain dac. Only reports first channel of SCP.
82: Checks noise of strain dac. Only reports first channel of SCP.
83: Checks bridge completion leg resistance each channel.
84: Checks combined leg resistance each channel.
86: Checks current source SCP’s OFF current.
87: Checks current source SCP’s current dac mid-scale.
88: Checks current source SCP’s current dac range on HI and LO ranges.
89: Checks current source compliance
90: Checks strain SCP’s Wagner Voltage control.
91: Checks autobalance dac range with input shorted.
92: Sample and Hold channel holds value even when input value changed.
93: Sample and Hold channel held value test for droop rate.

ANALOG OUTPUT AND DIGITAL I/O TESTS

301: Current and Voltage Output SCPsdigital DAC control.
302: Current and Voltage Output SCPsDAC noise.
303: Current Output SCPoffset
304: Current Output SCPgain shift
305: Current Output SCPoffset
306: Current Output SCPlinearity
307: Current Output SCPlinearity
308: Current Output SCPturn over

313: Voltage Output SCPoffset
315: Voltage Output SCPoffset
316: Voltage Output SCPlinearity
HP E1422 Command Reference  365Chapter 6



IEEE-488.2 Common Command Reference
317: Voltage Output SCPlinearity
318: Voltage Output SCPturn over

331: Digital I/O SCPinternal digital interface
332: Digital I/O SCPuser input 
333: Digital I/O SCPuser input
334: Digital I/O SCPuser output
335: Digital I/O SCPuser output
336: Digital I/O SCPoutput current
337: Digital I/O SCPoutput current

341: Freq/PWM/FM SCPinternal data0 register
342: Freq/PWM/FM SCPinternal data1 register
343: Freq/PWM/FM SCPinternal parameter register
344: Freq/PWM/FM SCPon-board processor self-test
345: Freq/PWM/FM SCPon-board processor self-test
346: Freq/PWM/FM SCPuser inputs
347: Freq/PWM/FM SCPuser outputs
348: Freq/PWM/FM SCPoutputs ACTive/PASSive
349: Freq/PWM/FM SCPoutput interrupts

350: Watchdog SCPenable/disable timer
351: Watchdog SCPrelay drive and coil closed
352: Watchdog SCPrelay drive and coil open
353: Watchdog SCPI/O Disconnect line
354: Watchdog SCPI/O Disconnect supply

*WAI

*WAI Wait-to-continue. Prevents an instrument from executing another command 
until the operation begun by the previous command is finished (sequential operation).

Note Do not use *WAI to determine when the CAL:SETUP or CAL:TARE commands 
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?. 
CAL:SETUP? and CAL:TARE? return a value only after the CAL:SETUP or 
CAL:TARE operations are complete.

Send with VXIplug&play Function: hpe1422_cmd(...)
366 HP E1422 Command Reference  Chapter 6



Command Quick Reference

ry
 Command Quick Reference

The following tables summarize SCPI and IEEE-488.2 Common (*) commands for 
the HP E1422A Remote Channel Multifunction Module.

SCPI Command Quick Reference
Command Description

ABORt Stops scanning immediately and sets trigger system to idle state (scan lists are 
unaffected)

ALGorithm Subsystem to define, configure, and enable loop control algorithms

[:EXPLicit]

:ARRay ’<alg_name>’,’< array_name>’,<block_data> Defines contents of  array <array_name> in algorithm <alg_name> or if 
<alg_name> is "GLOBALS", defines values global to all algorithms.

:ARRay? ’<alg_name>’,’< array_name>’ Returns block data from <array_name> in algorithm <alg_name> or if 
<alg_name> is "GLOBALS", returns values from a global array.

:DEFine ’<alg_name>’[,<swap_size>],’<program_data>’ Defines algorithms or global variables. <program_data> is ’C’ source of 
algorithm or global declaration.

:SCALar ’<alg_name>’,’< var_name>’,<value> Defines value of variable <var_name> in algorithm <alg_name> or if 
<alg_name> is "GLOBALS", defines a value global to all algorithms.

:SCALar? ’<alg_name>’,’< var_name>’ Returns value from <var_name> in algorithm <alg_name> or if <alg_name> 
is "GLOBALS", returns a value from global variable.

:SCAN

:RATio ’<alg_name>’,<ratio> Sets scan triggers per execution of <alg_name> (send also ALG:UPD)

:RATio? ’<alg_name>’ Returns scan triggers per execution of <alg_name>

:SIZe? ’<alg_name>’ Returns size in words of named algorithm 

:STATe ’<alg_name>’,ON | OFF Enables/disables named algorithm after ALG:UPDATE sent

:STATe? ’<alg_name>’ Returns state of named algorithm 

:TIME? ’<alg_name>’ | MAIN Returns worst case alg execution time. Use "MAIN" for overall time.

:FUNCtion

:DEFine  ’<function_name>’,<range>,<offset>,<func_data> Defines a custom conversion function

:OUTPut

:DELay <delay> | AUTO Sets the delay from scan trigger to start of outputs

:DELay? Returns the delay from scan trigger to start of outputs

:UPDate

[:IMMediate] Requests immediate update of algorithm code, variable, or array

:CHANnel (@<channel> Sets dig channel to synch algorithm updates

:WINDow <num_updates> Sets a window for num_updates to occur. *RST default is 20

:WINDow? Returns setting for allowable number variable and algorithm  updates.

ARM

[:IMMediate] Arm if ARM:SOUR is BUS or HOLD (software ARM)

:SOURce BUS | EXT | HOLD | IMM | SCP | TTLTrg<n> Specify the source of Trigger Timer ARM

:SOURce? Return current ARM source

CALibration

:CONFigure Prepare to measure on-board references with an external multimeter

:RESistance Configure to measure reference resistor

:VOLTage <range>, ZERO | FSCale Configure to measure reference voltage range at zero or full scale

:REMote? Calibrates Remote Signal Conditioning Units

:DATA Sends RSC cal constants from CAL:REM:DATA? back to HP E1422A

:DATA? Queries HP E1422A for all remote cal constants

:STORe Copies RSCU calibration constants from working ram to non-volatile memo

:SETup Performs Channel Calibration procedure

:SETup? Returns state of CAL:SETup operation (returns error codes or 0 for OK)
HP E1422 Command Reference  367Chapter 6



Command Quick Reference
CALibration (cont.)

:STORe ADC | TARE Store cal constants to non-volatile Flash RAM for either A/D calibration or 
those generated by the CAL:TARE command

:TARE (@<ch_list>) Calibrate out system field wiring offsets

:RESet Resets cal constants from CAL:TARE back to zero for all channels

:TARE? Returns state of CAL:TARE operation (returns error codes or 0 for OK)

:VALue

:RESistance <ref_ohms> Send to instrument the value of just measured reference resistor

:VOLTage <ref_volts> Send to instrument the value of just measured voltage reference

:ZERO? Correct A/D for short term offset drift (returns error codes or 0 for OK)

DIAGnostic

:CALibration

:SETup

[:MODE] 0 | 1 Set analog DAC output SCP calibration mode

[:MODE]? Return current setting of DAC calibration mode

:TARe

[:OTD]

[:MODE] 0 | 1 Set mode to control OTD current during tare calibration

[:MODE]? Return current setting of OTD control during tare calibration

:CHECksum? Perform checksum on Flash RAM and return a ’1’ for OK, a ’0’ for corrupted 
or deleted memory contents

:CONNect <source>,<mode>,(@<ch_list>) connect HP E1529A channels to measure internal values for verification

:CUSTom

:MXB <slope>,<offset>,(@<ch_list>) Generates and loads linear custom EU table

:PIECewise  <table_ad_range>,<table_block>,(@<ch_list>) Loads piecewise custom EU table

:REFerence:TEMPerature Puts the contents of the Reference Temperature Register into the FIFO

:INTerrupt[:LINe] <intr_line>  Sets the VXIbus interrupt line the module will use

:INTerrupt[:LINe]? Returns the VXIbus interrupt line the module is using

:OTDetect[:STATe] ON | OFF, (@<ch_list>)  Controls "Open Transducer Detect" on SCPs contained in <ch_list>

:OTDetect[:STATe]? (@<channel>) Returns current state of OTD on SCP containing <channel>

:QUERy

:SCPREAD? <reg_addr> Returns value from an SCP register

:TEST?

:REMote

:NUMber? <test_num>,<iterations>,(@<channel>) Performs single selected self-test on RSCU a selected number of times

:SELFtest? (@<channel>) Performs complete self-test on Remote Signal Conditioning Units

:VERSion? Returns manufacturer, model, serial#, flash revision #, and date
e.g. HEWLETT-PACKARD,E1422B,US34000478,A.04.00, 
Wed Jul 08 11:06:22 MDT 1994

FETCh? Return readings stored in VME Memory (format set by FORM cmd)

FORMat

[:DATA] <format>[, <size>] Set format for response data from [SENSe:]DATA?

 ASCii[, 7] Seven bit ASCII format (not as fast as 32-bit because of conversion)

 PACKed[, 64] Same as REAL, 64 except NaN, +INF, and -INF  formated for HP BASIC

 REAL[, 32] IEEE 32-bit floating point (requires no conversion so is fastest)

 REAL, 64 IEEE 64-bit floating point (not as fast as 32-bit because of conversion)

[:DATA]? Returns format: REAL, +32 | REAL, +64 | PACK, +64 | ASC, +7

SCPI Command Quick Reference
Command Description
368 HP E1422 Command Reference  Chapter 6



Command Quick Reference

stor

l

INITiate

[:IMMediate]  Put module in Waiting for Trigger state (ready to make one scan)

INPut

:FILTer Control filter Signal Conditioning Plug-ons

[:LPASs]

:FREQuency <cutoff_freq>,(@<ch_list>) Sets the cutoff frequency for active filter SCPs

:FREQuency? (@<channel>) Returns the cutoff frequency for the channel specified

[:STATe] ON | OFF, (@<channel>) Turn filtering OFF (pass through) or ON (filter)

[:STATe]? (@<channel>) Return state of SCP filters

:GAIN <chan_gain>,(@<ch_list>) Set gain for  amplifier-per-channel SCP

:GAIN? (@<channel>) Returns the channel’s gain setting

:LOW <wvolt_type>,(@<ch_list>) Controls the connection of input LO on a Strain Bridge (Opt. 21 SCP)

:LOW? (@<channel>) Returns the LO connection for the Strain Bridge at channel

:POLarity NORmal | INVerted,(@<ch_list>) Sets input polarity on a digital SCP channel

:POLarity? (@<channel>) Returns digital polarity currently set for <channel

MEASure MEAS performs automatic set-up and measurement scanning:

:VOLTage return value in volts;

:EXCitation? (@<ch_list>) measure excitation voltage at strain bridge, send to EU conversion

:UNSTrained? (@<ch_list>) measure unstrained bridge output voltage, send to EU conversion

MEMory

:VME

:ADDRess <mem_address> Specify address of VME memory card to be used as reading storage

:ADDRess? Returns address of VME memory card

:SIZE <mem_size> Specify number of bytes of VME memory to be used to store readings

:SIZE? Returns number of VME memory bytes allocate to reading storage

:STATe 1 | 0 | ON | OFF Enable or disable reading storage in VME memory at INIT

:STATe? Returns state of VME memory, 1=enabled, 0=disabled

OUTPut

:CURRent

:AMPLitude <amplitude>,(@<ch_list>) Set amplitude of Current Source SCP channels

:AMPLitude? (@<channel>) Returns the setting of the Current Source SCP channel

:STATe ON | OFF,(@<ch_list>) Enable or disable the Current Source SCP channels

:STATe? (@<channel>) Returns the state of the Current Source SCP channel

:POLarity NORmal | INVerted,(@<ch_list>) Sets output polarity on a digital SCP channel

:POLarity? (@<channel>) Returns digital polarity currently set for <channel>

:SHUNt ON | OFF,(@<ch_list>) Adds shunt resistance to leg of Bridge Completion SCP channels

:SOURce INTernal | EXTernal,(@<ch_list>) Selects either the E1529’s internal shunt resistor, or an external shunt resi

:SHUNt? (@<channel>) Returns the state of the shunt resistor on Bridge Completion SCP channe

:TTLTrg

:SOURce FTRigger | LIMit | SCPlugon | TRIGger Sets the internal trigger source that can drive the VXIbus TTLTrg lines

:SOURce? Returns the source of TTLTrg drive.

:TTLTrg<n>

[:STATe] ON | OFF When  module triggered, source a VXIbus trigger on TTLTrg<n>

[:STATe]? Returns whether the TTL trigger line specified by n is enabled

:TYPE PASSive | ACTive,(@<ch_list>) sets the output drive type for a digital channel

:TYPE? (@<channel>) Returns the output drive type for <channel>

:VOLTage

:AMPLitude <amplitude>,(@<ch_list>) Sets the voltage amplitude on Voltage Output and Strain SCPs

:AMPLitude? (@<channel>) Returns the voltage amplitude setting

SCPI Command Quick Reference
Command Description
HP E1422 Command Reference  369Chapter 6



Command Quick Reference
ROUTe

:SEQuence

:DEFine (@<ch_list>) Defines the analog scan list.

:DEFine? AIN | AOUT | DIN | DOUT | DEST Returns comma separated list of channels in analog I|O, dig I|O ch lists. For 
DEST, returns the data destination for each AIN channel; 0=none, 1=CVT, 
2=FIFO, 3=CVT&FIFO, -1=set by algorithm (writefifo, writecvt, writeboth)

:POINts? AIN | AOUT | DIN | DOUT Returns number of channels defined in  above lists.

SAMPle

:TIMer <num_samples>,(@<ch_list>) sets the time interval between channel measurements

:TIMer? (@<channel>) Returns the time interval between channel measurements

[SENSe:]

CHANnel

:SETTling <settle_time>,(@<ch_list>) Sets the channel settling time for channels in  ch_list

:SETTling? (@<channel>) Returns the channel settling time for channel

DATA

:CVTable? (@<ch_list>) Returns elements of Current Value Table specified by ch_list

:RESet Resets all entries in the Current Value Table to IEEE "Not-a-number"

:FIFO

[:ALL]? Fetch all readings until instrument returns to trigger idle state

:COUNt? Returns the number of measurements in the FIFO buffer

:HALF? Returns 1 if at least 32,768 readings are in FIFO, else returns 0

:HALF? Fetch 32,768 readings (half the FIFO) when available

:MODE BLOCK | OVERwrite Set FIFO mode.

:MODE? Return the currently set FIFO mode

:PART? <n_readings> Fetch n_readings from FIFO reading buffer when available

:RESet Reset the FIFO counter to 0

FREQuency

:APERture <gate_time>,(@<ch_list>) Sets the gate time for frequency counting

:APERture? (@<channel>) Returns the gate time set for frequency counting

FUNCtion Equate a function and range with groups of channels

:CONDition (@<ch_list>) Sets function to sense digital state

:CUSTom [<range>,](@<ch_list>) Links channels to custom EU conversion table loaded by DIAG:CUST:MXB 
or DIAG:CUST:PIEC commands

:REFerence [<range>,](@<ch_list>) Links channels to custom reference temperature EU conversion table loaded 
by DIAG:CUST:PIEC commands

:TC <type>,[<range>,](@<ch_list>) Links channels to custom temperature EU conversion table loaded by 
DIAG:CUST:PIEC, and performs ref temp compensation for <type>

:FREQuency (@<ch_list>) Configure channels to measure frequency

:RESistance <excite_current>,[<range>,](@<ch_list>) Configure channels to sense resistance measurements

:STRain Links measurement channels as having read bridge voltage from:

:FBENding [<range>,](@<ch_list>) Full BENding

:FBPoisson [<range>,](@<ch_list>) Full Bending Poisson

:FPOisson [<range>,](@<ch_list>) Full POisson

:HBENding [<range>,](@<ch_list>) Half BENding

:HPOisson [<range>,](@<ch_list>) Half Poisson

[:QUARter] [<range>,](@<ch_list>) QUARter 

:Q120 [<range>,](@<ch_list>) Quarter bridge with the 120Ω resistor selected (HP E1529A only)

:Q350 [<range>,](@<ch_list>) Quarter bridge with the 350Ω resistor selected (HP E1529A only)

:USER [<range>,](@<ch_list>) Quarter bridge with the user supplied resistor selected (HP E1529A only) 

SCPI Command Quick Reference
Command Description
370 HP E1422 Command Reference  Chapter 6



Command Quick Reference
SENse:FUNCtion (continued)

RTD, 85 | 92 RTDs

TCouple, CUST | E | EEXT | J | K | N | S | T thermocouples

THERmistor, 2250 | 5000 | 10000 thermistors

:TEMPerature <sensor_type>,<sub_type>,
[<range>,](@<ch_list>)

Configure channels for temperature measurement types above:
excitation current comes from Current Output SCP. 

:TOTalize (@<ch_list>) Configure channels to count digital state transitions

:VOLTage[:DC] [<range>,](@<ch_list>) Configure channels for DC voltage measurement

RTD, 85 | 92 RTDs

THERmistor,5000 thermistors

:REFerence <sensor_type>,<sub_type>,[<range>,](@<ch_list>)  Configure channel for reference temperature measurements above:

:CHANnels (@<ref_channel>),(@<ch_list>) Groups reference temperature channel with TC measurement channels

:TEMPerature <degrees_c> Specifies the temperature of a controlled temperature reference junction

:STRain

:BRIDge[:TYPE] <select>,(@<ch_list>) Set bridge configuration switches on HP E1529

:BRIDge[:TYPE]? (@<channel>) Returns the current bridge configuration setting

:CONNect BRIDge | EXCitation,(@<ch_list>) Set switches to sense bridge output, or excitation voltage on HP E1529A

:CONNect? (@<channel>) Returns the current sense setting for the channel specified

:EXCitation <excite_v>,(@<ch_list>) Specifies the Excitation Voltage by channel to the strain EU conversion 

:EXCitation? (@<channel>) Returns the Excitation Voltage set for <channel>

:STATe ON | OFF,(@<ch_list>) controls state of excitation supply relay in HP E1529A to banks of 8 channels

:STATe? (@<channel>) returns state of excitation supply relay ("ON" | "OFF"

:GFACtor <gage_factor>,(@<ch_list>) Specifies the Gage Factor by channel to the strain EU conversion 

:GFACtor? (@<channel>) Returns the Gage Factor set for <channel>

:POISson <poisson_ratio>,(@<ch_list>) Specifies the Poisson Ratio by channel to the strain EU conversion

:POISson? (@<channel>) Returns the Poisson Ratio set for <channel>

:UNSTrained <unstrained_v>,(@<ch_list>) Specifies the Unstrained Voltage by channel to the strain EU conversion 

:UNSTrained? (@<channel>) Returns the Unstrained Voltage set for <channel>

SOURce

:FM

[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) Configure digital channels to output frequency modulated signal

[:STATe]? (@<channel>) Returns state of channels for FM output

:FUNCtion

[:SHAPe]

:CONDition (@<ch_list>) Configures channels to output static digital levels

:PULSe (@<ch_list>) Configures channels to output digital pulse(s)

:SQUare (@<ch_list>) Configures channels to output 50/50 duty cycle digital pulse train

:PULM

:STATe 1 | 0 | ON | OFF,(@<ch_list>) Configure digital channels to output pulse width modulated signal

:STATe? (@<channel>) Returns state of channels for PW modulated output

:PULSe

:PERiod <period>,(@<ch_list>) Sets pulse period for PW modulated signals

:PERiod? (@<channel>) Returns pulse period for PW modulated signals

:WIDTh <width>,(@<ch_list>) Sets pulse width for FM modulated signals

:WIDTh? (@<channel>) Returns pulse width setting for FM modulated signals

:VOLTage

[:AMPLitude] <-offset_v>,(@<ch_list>) Used to correct for bridge offset at dynamic strain connector (Buffered Output)

SCPI Command Quick Reference
Command Description
HP E1422 Command Reference  371Chapter 6



Command Quick Reference
STATus

:OPERation Operation Status Group: Bit assignments; 0=Calibrating, 4=Measuring, 
8=Scan Complete, 10=FIFO Half Full, 11=algorithm interrupt

:CONDition? Returns state of Operation Status signals

:ENABle <enable_mask> Bits set to 1 enable status events to be summarized into Status Byte

:ENABle? Returns the decimal weighted sum of bits set in the Enable register

[:EVENt]? Returns weighted sum of bits that represent Operation status events

STATus:OPERation (continued)

:NTRansition  <transition_mask> Sets mask bits to enable pos. Condeition Reg. transitions to Event reg

:NTRansition? Returns positive transition mask value

:PTRansition  <transition_mask> Sets mask bits to enable neg. Condeition Reg. transitions to Event reg

:PTRansition? Returns negative transition mask value

:PRESet Presets both the Operation and Questionable Enable registers to 0

:QUEStionable Questionable Data Status Group: Bit assignments; 8=Calibration Lost,  
9=Trigger Too Fast, 10=FIFO Overflowed, 11=Over voltage, 12=VME 
Memory Overflow, 13=Setup Changed.

:CONDition? Returns state of Questionable Status signals

:ENABle <enable_mask> Bits set to 1 enable status events to be summarized into Status Byte

:ENABle? Returns the decimal weighted sum of bits set in the Enable register

[:EVENt]? Returns weighted sum of bits that represent Questionable Data events

:NTRansition  <transition_mask> Sets mask bits to enable pos. Condeition Reg. transitions to Event reg

:NTRansition? Returns positive transition mask value

:PTRansition  <transition_mask> Sets mask bits to enable neg. Condeition Reg. transitions to Event reg

:PTRansition? Returns negative transition mask value

SYSTem  

:CTYPe? (@<channel>) Returns the identification of the SCP at channel

:ERRor? Returns one element of the error queue "0" if no errors

:VERSion? Returns the version of SCPI this instrument complies with

TRIGger

:COUNt <trig_count> Specify the number of trigger events that will be accepted

:COUNt? Returns the current trigger count setting

[:IMMediate] Triggers instrument when TRIG:SOUR is TIMer or HOLD (same as *TRG 
and IEEE 488.1 GET commands.

:SOURce BUS | EXT | HOLD | IMM | SCP | TIMer | TTLTrg<n> Specify the source of instrument triggers

:SOURce? Returns the current trigger source

:TIMer Sets the interval between scan triggers when TRIG:SOUR is TIMer

[:PERiod] <trig_interval> Sets the interval between scan triggers when TRIG:SOUR is TIMer

[:PERiod]? Returns setting of trigger timer

SCPI Command Quick Reference
Command Description
372 HP E1422 Command Reference  Chapter 6



Command Quick Reference
IEEE-488.2 Common Command Quick Reference

Category Command Title Description

Calibration *CAL? Calibrate Performs internal calibration on all 64 channels out to the 
terminal module connector. Returns error codes or 0 for OK

Internal Operation *IDN? Identification Returns the response: 
HEWLETT-PACKARD,E1422B,<serial#>,<driver rev#>

*RST Reset Resets all scan lists to zero length and stops scan triggering. 
Status registers and output queue are unchanged.

*TST? Self-test Performs self-test. Returns 0 to indicate test passed.

Status Reporting *CLS Clear Status Clears all status event registers and so their status summary bits 
(except the MAV bit).

*ESE <mask> Event Status Enable Set Standard Event Status Enable register bits mask.

*ESE? Event Status Enable query Return current setting of Standard Event Status Enable register.

*ESR? Event Status Register query Return Standard Event Status Register contents.

*SRE <mask> Service Request Enable Set Service Request Enable register bit mask.

*SRE? Service Request Enable query Return current setting of the Service Request Enable register.

*STB? Read Status Byte query Return current Status Byte value.

Macros *DMC <name>,<cmd_data> Define Macro Command Assigns one, or a sequence of commands to a macro.

*EMC 1 | 0 Enable Macro Command Enable/Disable defined macro commands.

*EMC? Enable Macros query Returns 1 for macros enabled, 0 for disabled.

*GMC? <name> Get Macro query Returns command sequence for named macro.

*LMC? Learn Macro query Returns comma-separated list of defined macro names

*PMC Purge Macro Commands Purges all macro commands

*RMC <name> Remove Individual Macro Removes named macro command.

Synchronization *OPC Operation Complete Standard Event register’s Operation Complete bit will be 1 when 
all pending device operations have been finished.

*OPC? Operation Complete query Places an ASCII 1 in the output queue when all pending 
operations have finished.

*TRG Trigger Trigger s module when TRIG:SOUR is HOLD.

*WAI Wait to Complete
HP E1422 Command Reference  373Chapter 6



Command Quick Reference
Notes:
374 HP E1422 Command Reference  Chapter 6



 375
 404
Appendix A

Specifications

• HP E1422 Specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
• HP E1529A Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

HP E1422 Specifications

 

Power Requirements
(with no SCPs installed) +5V +12V -12V +24V -24V -5.2V

IPm=Peak Module Current IPm IDm IPm IDm IPm IDm IPm IDm IPm IDm IPm IDm

IDm=Dynamic Module Current 1.0 0.02 0.06 0.01 0.01 0.01 0.1 0.01 0.1 0.01 0.15 0.01

Cooling Requirements  Average Watts/Slot ∆Pressure (mmH2O) Air Flow (liters/s)

 14 0.08 0.08

Power Available for SCPs
(See VXI Catalog or SCP 
manuals for SCP current)

1.0A ±24V,  3.5A 5V

Measurement ranges

DC Volts  (HP E1501 or HP E1502) ±62.5mV to ±16V Full Scale

Temperature  Thermocouples -  -200 to +1700 °C

Thermistors - (Opt 15 required) -80 to +160 °C

 RTD’s -  (Opt 15 required) -200 to +850 °C

Resistance  (HP E1505 with HP E1501) 512 ohms to 131 Kohms FS

Strain  25,000 µe or limit of linear range of strain gage

Measurement Resolution  16 bits (including sign)

Maximum Update Rate
(running PIDA algorithms)

 1 Algorithm
8 Algorithms
32 Algorithms

2.5 KHz
1 KHz
250 Hz

Trigger Timer and
Sample Timer Accuracy

 100ppm (.01%) from -10 °C to +70 °C
Specifications  375Appendix A



The following specifications reflect the performance of the HP E1422 with the HP E1501 Direct Input Signal Conditioning Plug-on. The 
performance of the HP E1422 with other SCPs is found in the Specifications section of that SCP’s manual.

External Trigger Input  TTL compatible input. Negative true edge triggered except first trigger will occur if 
external trigger input is held low when module is INITiated. Minimum pulse width 
100nS. Since each trigger starts a complete scan of 2 or more channel readings, 
maximum trigger rate depends on module configuration. 

Maximum input voltage
(Normal mode plus common mode)

 With Direct Input, Passive Filter, or Amplifier SCPs:
Operating: < ±16 V peak Damage level: >±42 V peak

With HP E1513 Divide by 16 Attenuator SCP:
Operating: <±60 VDC, <±42 V peak 

Maximum common mode 
voltage 

 With Direct Input, Passive Filter, or Amplifier SCPs:
Operating: <±16 V peak     Damage level: >±42 V peak

With HP E1513 Divide by 16 Attenuator SCP:
Operating: <±60 VDC, <±42 V peak

Common mode rejection  0 to 60Hz  -105dB

Input impedance  greater than 90 MOhm differential
(1 M Ohm with HP E1513 Attenuator)

On-board Current Source  122 µA ±0.02%, with ±17 Volts Compliance

Maximum tare cal. offset  SCP Gain = 1 (Maximum tare offset depends on A/D range and SCP gain)

A/D range
±V F.Scale

16 4 1 0.25 0.0625

Max Offset 3.2213 .82101 .23061 .07581 .03792

Measurement accuracy 
DC Volts 

  (90 days) 23°C ±1°C (with *CAL? done after 1 hr warm up and CAL:ZERO? within 5 min.).
NOTE:  If autoranging is ON:

for readings  <3.8V, add ±.02%  to linearity specifications.

for readings  ≥3.8V, add ±.05%  to linearity specifications.

 A/D range
±V F. Scale

Linearity
% of Reading

Offset Error Noise
3 sigma

Noise*
3 sigma

 .0625
.25
1
4
16

0.01%
0.01%
0.01%
0.01%
0.01%

5.3µV

10.3µV

31µV

122µV

488µV

18µ
45µV

110µV

450µV
1.8 mV

8µV

24µV

90µV

366µV
1.5 mV

Temperature Coefficient: Gain - 10ppm/°C.    Offset - (0 - 40°C) .14µV/°C, (40 - 55°C) .8µV+.38µV/°C 
376 Specifications  Appendix A



 378
 379
 380
 381
 382
 383
  384
  385
 386
 387
 388
  389
  390
 391
 392
 393
 394
  395
 396
 397
 398
 399
 400
 401
 402
 403
• Thermocouple Type E (-200-800C), SCPs HP E1501,02,03 . . . .   
• Thermocouple Type E (-200-800C), SCPs HP E1508,09. . . . . . .   
• :Thermocouple Type E (0-800C), SCPs HP E1501,02,03  . . . . . .   
• Thermocouple Type E (0-800C), SCPs HP E1509,09  . . . . . . . . .   
• Thermocouple Type E Extended, SCPs HP E1501,02,03. . . . . . .   
• Thermocouple Type E Extended, SCPs HP E1508,09 . . . . . . . . .   
• Thermocouple Type J, SCPs HP E1501,02,03 . . . . . . . . . . . . . . .  
• Thermocouple Type J, SCPs HP E1508,09. . . . . . . . . . . . . . . . . .  
• Thermocouple Type K, SCPs HP E1501,02,03  . . . . . . . . . . . . . .   
• Thermocouple Type R, SCPs HP E1501,02,03. . . . . . . . . . . . . . .   
• Thermocouple Type R, SCPs HP E1508,09 . . . . . . . . . . . . . . . . .   
• Thermocouple Type S, SCPs HP E1501,02,03 . . . . . . . . . . . . . . .  
• Thermocouple Type S, SCPs HP E1508,09 . . . . . . . . . . . . . . . . .  
• Thermocouple Type T, SCPs HP E1501,02,03 . . . . . . . . . . . . . . .   
• Thermocouple Type T, SCPs HP E1508,09  . . . . . . . . . . . . . . . . .   
• 5K Thermistor Reference, SCPs HP E1501,02,03 . . . . . . . . . . . .   
• 5K Thermistor Reference, SCPs HP E1508,09. . . . . . . . . . . . . . .   
• RTD Reference, SCPs HP E1501,02,03 . . . . . . . . . . . . . . . . . . . .  
• RTD, SCPs HP E1501,02,03. . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
• RTD, SCPs HP E1508,09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
• 2250 Thermistor, SCPs HP E1501,02,03 . . . . . . . . . . . . . . . . . . .   
• 2250 Thermistor, SCPs HP E1508,09. . . . . . . . . . . . . . . . . . . . . .   
• 5K Thermistor, SCPs HP E1501,02,03. . . . . . . . . . . . . . . . . . . . .   
• 5K Thermistor, SCPs HP E1508,09 . . . . . . . . . . . . . . . . . . . . . . .   
• 10K Thermistor, SCPs HP E1501,02,03. . . . . . . . . . . . . . . . . . . .   
• 10K Thermistor, SCPs HP E1508,09  . . . . . . . . . . . . . . . . . . . . . .   

Temperature Accuracy  The following pages have temperature accuracy graphs that include instrument and 
firmware linearization errors. The linearization algorithm used is based on the ITS-90 
standard transducer curves. Add your transducer accuracy to determine total 
measurement error.

The thermocouple graphs on the following pages include only the errors due to 
measuring the voltage output of the thermocouple, as well as the algorithm errors due 
to converting the thermocouple voltage to temperature. To this error must be added the 
error due to measuring the reference junction temperature with an RTD or a 5K 
thermistor. See the graphs for the RTD or the 5K thermistor to determine this additional 
error. Also, the errors due to gradients across the isothermal reference must be added. 
If an external isothermal reference panel is used, consult the manufacturer’s 
specifications. If HP termination blocks are used as the isothermal reference, see the 
notes below.

NOTES
1) When using the Terminal Module as the isothermal reference, add ±0.6°C to the 
thermocouple accuracy specs to account for temperature gradients across the Terminal 
Module. The ambient temperature of the air surrounding the Terminal Module must be 
within ±2°C of the temperature of the inlet cooling air to the VXI mainframe.

2) When using the HP E1586 Rack-Mount Terminal Panel as the isothermal reference, 
add ±0.2°C to the thermocouple accuracy specs to account for temperature gradients 
across the HP E1586. The HP E1586A should be mounted in the bottom part of the 
rack, below and away from other heat sources for best performance.

The temperature specification graphs are found on the following pages:
Specifications  377Appendix A



Thermocouple Type E (-200-800C), SCPs HP E1501,02,03
378 Specifications  Appendix A



Thermocouple Type E (-200-800C), SCPs HP E1508,09
Specifications  379Appendix A



:Thermocouple Type E (0-800C), SCPs HP E1501,02,03
380 Specifications  Appendix A



Thermocouple Type E (0-800C), SCPs HP E1509,09
Specifications  381Appendix A



Thermocouple Type E Extended, SCPs HP E1501,02,03
382 Specifications  Appendix A



Thermocouple Type E Extended, SCPs HP E1508,09
Specifications  383Appendix A



Thermocouple Type J, SCPs HP E1501,02,03
384 Specifications  Appendix A



Thermocouple Type J, SCPs HP E1508,09
Specifications  385Appendix A



Thermocouple Type K, SCPs HP E1501,02,03
386 Specifications  Appendix A



Thermocouple Type R, SCPs HP E1501,02,03
Specifications  387Appendix A



Thermocouple Type R, SCPs HP E1508,09
388 Specifications  Appendix A



Thermocouple Type S, SCPs HP E1501,02,03
Specifications  389Appendix A



Thermocouple Type S, SCPs HP E1508,09
390 Specifications  Appendix A



Thermocouple Type T, SCPs HP E1501,02,03
Specifications  391Appendix A



Thermocouple Type T, SCPs HP E1508,09
392 Specifications  Appendix A



5K Thermistor Reference, SCPs HP E1501,02,03
Specifications  393Appendix A



5K Thermistor Reference, SCPs HP E1508,09
394 Specifications  Appendix A



RTD Reference, SCPs HP E1501,02,03
Specifications  395Appendix A



RTD, SCPs HP E1501,02,03
396 Specifications  Appendix A



RTD, SCPs HP E1508,09
Specifications  397Appendix A



2250 Thermistor, SCPs HP E1501,02,03
398 Specifications  Appendix A



2250 Thermistor, SCPs HP E1508,09
Specifications  399Appendix A



5K Thermistor, SCPs HP E1501,02,03
400 Specifications  Appendix A



5K Thermistor, SCPs HP E1508,09
Specifications  401Appendix A



10K Thermistor, SCPs HP E1501,02,03
402 Specifications  Appendix A



10K Thermistor, SCPs HP E1508,09
Specifications  403Appendix A



HP E1529A Specifications
General:

HP E1529A outputs: Single static output from 32:1 multiplexer

32 individually buffered dynamic outputs

Bridge completion: 120, 350 Ohm and user installed,
program selectable

Bridge configurations: Full, half, and quarter

Remote operation: 330m (1000 ft) from multiiplexed output
100m (300 ft) from buffered outputs

Bridge excitation: User-supplied excitation in 8-channel banks

Linearization: Mx+b on all channels

Calibration: Internal self-calibration source 50 kOhm and
user-installed shunt calibration resistor,
program selectable

Measurement rate: 25 kSa/s via multiplexed output, up to
196 kSa/s dynamic

Static (multiplexed) outputs:
Gain (HP E1529A only)
Gain (HP E1529A + E1422A) 
Resolution (1 LSB @ HP E1422A) 

 
32V per V
5000V per V
0.06 microvolt (subject to RMS noise limits)

Recommended measurement products:

Static strain measurements

Dynamic strain measurements

Note: Companion products listed below are
VXI-based. Twelve measurement module slots
are typically available in systems using any one
of HP’s available 13-slot VXI mainframes.

HP E1422A Remote Channel DAC Module
plus up to 8 HP E1539A SCPs

HP E1432A 16 Chan 51.2 kSa/s Digitizer
HP E1433A 8 Chan 196 kSa/s Digitizer

Bridge Specifications

Completion resistors:
Values
Power

120/350 Ohm ± 0.05%, ±5 ppm/°C TC
0.125W @ 125 °C

Shunt cal resistor: 50 kOhm ±0.1%, ±25 ppm/°C TC

Quarter bridge offset: 3 microstrain (±2 microvollt), ±4 °C of tare cal

Excitation sense:
Maximum input
Gain accuracy 
Offset 

±8 VDC (16V centered about Gnd terminal)
±0.01% of reading
<1 mV

Strain Measurement

Measurement range (µ∈)
(Quarter bridge, ±5V excitation:
±200,000 
±50,000 
±12,500 
±3,125 

Resolution (µ∈): 
6.1 
1.5 
0.4 

0.1

RMS noise (µ∈):
0.4
0.4
0.4

 0.4 (noise can be
reduced by averaging)

System accuracy: Note: After CAL routine, 1 hour warm-up, ±1 °C
404 Specifications  Appendix A



Voltage offset: <2 microvolt

Gain error: <0.015% of reading

RMS Noise: <1 microvolt rms

CMRR: >100 dB, DC-10 MHz (common mode range ± 10V)

Drift: 

Offset drift 

Gain drift 

Note: drift errors can be removed by running
CAL routine
<1 microvolt/°C
<1 microvolt/month
<30 ppm/°C

Dynamic outputs: 32V per V ±0.1% of reading

Gain: <250 microvolt

Offset: >20 kHz

Bandwidth: 

Equivalent input noise (E.I.N.): <20 nv/sqr(Hz)

Quarter Bridge Bending Errors: (5 V Excitation, GF=2)
µ∈ 
-50,000 
-40,000 
-30,000 
-20,000 
-10,000 
0 
10,000 
20,000 
30,000 
40,000 
50,000 

Error (µ∈)
160
90
45
20
8
1
8
20
45
90
160

Half Bridge Bending Errors: (5 V Excitation, GF=2)
µ∈
-50,000 
-40,000 
-30,000 
-20,000 
-10,000 
0 
10,000 
20,000 
30,000 
40,000 
50,000 

Error (µ∈)
28
23
17
12
6
0.5
6
12
17
23
28
Specifications  405Appendix A



Full Bridge Bending Errors : (5 V Excitation, GF=2)
µ∈
-50,000 
-40,000 
-30,000 
-20,000 
-10,000 
0 
10,000 
20,000 
30,000 
40,000 
50,000 

Error (µ∈)
28
22
17
11
6
0.3
6
11
17
22
28

Mechanical

Height: 4.45 cm (1.75 in)

Width: 49.53 cm (19.5 in)

Weight: 1.8 Kg (4 lbs)

Power Requirements

Line voltage: 100-240 Vac ±10% CAT II (2500Vpk transients)

Line frequency: 50-60 Hz

Input power: 16 VA

Environmental

Polution Degree: 2

Temperature: -5 °C to +55 °C operating

Humidity: 5 to 85% R.H.

Altitude: 3,000 meters (10,000 ft) operating
10,000 meters (30,000 ft) non-operating

Warranty

HP E1529A: 3 year return to HP
406 Specifications  Appendix A



Appendix B

Error Messages

Possible Error Messages:

-108 ’Parameter not allowed’.

-109 ’Missing parameter’

-160 ’Block data error’.

-211 ’Trigger ignored’.

-212 ’Arm ignored’.

-213 ’Init ignored’.

-221 ’Settings conflict’.

-222 ’Data out of range’.

-224 ’Illegal parameter value’.

-240 ’Hardware error’. Execute *TST?.

-253 ’Corrupt media’.

-281 ’Cannot create program’.

-282 ’Illegal program name’.

-310 ’System error’.

-410 ’Query INTERRUPTED’.

1000 ’Out of memory’

2001 ’Invalid channel number’.

2003 ’Invalid word address’.

2007 ’Bus error’.

2008 ’Scan list not initialized’.

2009 ’Too many channels in channel list’.

2016 ’Byte count is not a multiple of two’.

3000 ’Illegal while initiated’. Operation must be performed 
Error Messages  407Appendix B



before INIT or INIT:CONT ON.

3004 ’Illegal command. CAL:CONF not sent’. Incorrect 
sequence of calibration commands. Send 
CAL:CONF:VOLT command before 
CAL:VAL:VOLT and send CAL:CONF:RES 
command before CAL:VAL:RES

3005 ’Illegal command. Send CAL:VAL:RES’. The only 
command accepted after a CAL:CONF:RES is a 
CAL:VAL:RES command.

3006 ’Illegal command. Send CAL:VAL:VOLT’. The only 
command accepted after a CAL:CONF:VOLT is a 
CAL:VAL:VOLT command.

3007 ’Invalid signal conditioning module’. The command 
sent to an SCP was illegal for its type.

3008 ’Too few channels in scan list’. A Scan List must 
contain at least two channels.

3012 ’Trigger too fast’. Scan list not completed before 
another trigger event occurs.

3015 ’Channel modifier not permitted here’.

3019 ’TRIG:TIM interval too small for SAMP:TIM interval 
and scan list size’. TRIG:TIM interval must allow for 
completion of entire scan list at currently set 
SAMP:TIM interval. See TRIG:TIM in Chapter 5, the 
Command Reference

3020 ’Input overvoltage’. Calibration relays opened (if 
JM2202 not cut) to protect module inputs, and 
Questionable Data Status bit 11 set. Execute *RST to 
close relays and/or reset status bit.

3021 ’FIFO overflow’. Lets you know that the FIFO buffer 
has filled and that one or more readings have been lost. 
Usually caused by algorithm values stored in FIFO 
faster than FIFO was read.

3026 ’*CAL?/CAL:SET Calibration failed’.

3027 ’Unable to map A24 VXI memory’.

3028 ’Incorrect range value’. Range value sent is not 
supported by instrument.

3030 ’Command not yet implemented!!’.
408 Error Messages  Appendix B



3032 ’0x1: DSP-Unrecognized command code’.

3033 ’0x2: DSP-Parameter out of range’.

3034 ’0x4: DSP-Flash rom erase failure’.

3035 ’0x8: DSP-Programming voltage not present’.

3036 ’0x10: DSP-Invalid SCP gain value’. Check that SCP is 
seated or replace SCP. Channel numbers are in FIFO.

3037 ’0x20: DSP-Invalid *CAL? constant or checksum. 
*CAL? required.’.

3038 ’0x40: DSP-Couldn’t cal some channels’. Check that 
SCP is seated or replace SCP. Channel numbers are in 
FIFO.

3039 ’0x80: DSP-Re-Zero of ADC failed’.

3040 ’0x100: DSP-Invalid Tare CAL constant or checksum’. 
Perform CAL:TARE - CAL:TARE? procedure.

3041 ’0x200: DSP-Invalid Factory CAL constant or 
checksum’. Perform A/D Cal procedure.

3042 ’0x400: DSP-DAC adjustment went to limit’. Execute 
*TST?

3043 ’0x800: DSP Status--Do *CAL?’.

3044 ’0x1000: DSP-Overvoltage on input’.

3045 ’0x2000: DSP-cal constant out of range’. Execute 
*CAL?

3046 ’0x4000: DSP-ADC hardware failure’.

3047 ’0x8000: DSP-reserved error condition’.

3048 ’Calibration or Test in Process’.

3049 ’Calibration not in Process’.

3050 ’ZERO must be sent before FSCale’. Perform A/D Cal 
sequence as shown in Command Reference under 
CAL:CONF:VOLT

3051 ’Memory size must be multiple of 4’. From 
MEM:VME:SIZE. Each HP E1422 reading requires 4 
bytes.
Error Messages  409Appendix B



3052 ’Self test failed. Test info in FIFO’. Use 
SENS:DATA:FIFO:ALL? to retrieve data from FIFO.

NOTE: *TST? always sets the FIFO data FORMat to 
ASCII,7. Read FIFO data into string variables.

*Must send module to an HP Service Center for repair. 
Record information found in FIFO to assist the HP 
Service Center in repairing the problem.

Refer to the Command Reference under *TST? for a 
list of module functions tested.

 NOTE  During the first 5 minutes after power is applied, *TST? may fail. Allow the 
module to warm-up before executing *TST?

FIIFO Value Definition

1 - 99 ID number of failed test (see following table for 
possible corrective actions)

100 - 163 channel number(s) associated with test (ch 0-63)

164 special "channel" used for A/D tests only

200 A/D range 0.0625V associated with failed test

201 A/D range 0.25V associated with failed test

202 A/D range 1V associated with failed test

203 A/D range 4V associated with failed test

204 A/D range 16V associated with failed test

Test ID Corrective Actions

1 - 19, 21 - 29 (HP Service)*

20, 30 -37  Remove all SCPs and see if *TST? passes. If so, 
replace SCPs one at a time until you find the one 
causing the problem.

38 - 71 (HP Service)*

72,74 - 76, 80 - 93, 
301 - 354

re-seat the SCP that the channel number(s) points 
to, or move the SCP and see if the failure(s) follow 
the SCP. If the problems move with the SCP, 
replace the SCP.

73, 77 - 79, 94 - 99 (HP Service)*
410 Error Messages  Appendix B



3053 ’Corrupt on board Flash memory’.

3056 ’Custom EU not loaded’. May have erased custom 
EU conversion table with *RST. May have linked 
channel with standard EU after loading custom EU, this 
erases the custom EU for this channel. Reload custom 
EU table using DIAG:CUST:LIN or 
DIAG:CUST:PIEC.

3057 ’Invalid ARM or TRIG source when S/H SCP’s enabled’
Don’t set TRIG:SOUR or ARM:SOUR to SCP with 
HP E1510 or HP E1511 installed.

3058 ’Hardware does not have D32, S/H, or new trigger 
capabilities’. Module’s serial number is earlier than 
3313A00530.

3067 ’Multiple attempts to erase Flash Memory failed’

3068 ’Multiple attempts to program Flash Memory failed’

3069 ’Programming voltage jumper not set properly’. See 
Disabling Flash Memory Access in Chapter 1 
(JM2201)

3070 ’Identification of Flash ROM incorrect’

3071 ’Checksum error on Flash Memory’

3074 ’WARNING! Old Opt 16 or Opt 17 card can damage 
SCP modules’ must use HP E1506 or HP E1507.

3075 ’Too many entries in CVT list’

3076 ’Invalid entry in CVT list’ Can only be 10 to 511

3077 ’Too many updates in queue. Must send UPDATE 
command’ To allow more updates per ALG:UPD, 
increase ALG:UPD:WINDOW

3078 ’Invalid Algorithm name’ Can only be ’ALG1’ through 
’ALG32’, or ’GLOBALS’, or ’MAIN’

3079 ’Algorithm is undefined’ In ALG:SCAL, ALG:SCAL?, 
ALG:ARR, or ALG:ARR?

3080 ’Algorithm already defined’ Trying to repeat ALG:DEF 
with same <alg_name> (and is not enabled to swap), or 
trying to define ’GLOBALS’ again since last *RST

3081 ’Variable is undefined’ Algorithm exists but has no 
local variable by that name.
Error Messages  411Appendix B



3082 ’Invalid Variable name’ Must be valid ’C’ identifier, see 
Chapter 5

3083 ’Global symbol (variable or custom function) already 
defined’ Trying to define a global variable with same 
name as a user defined function, or vice versa. User 
functions are also global.

3084 ’Algorithmic error queue full’ ALG:DEF has generated 
too many errors from your algorithm source code

3084 "Error 1:Number too big for a 32 bit float"
"Error 2:Number too big for a 32 bit integer"
"Error 3:’8’ or ’9’ not allowed in an octal number"
"Error 4:Syntax error"
"Error 5:Expecting ’(’"
"Error 6:Expecting ’)’"
"Error 7:Expecting an expression"
"Error 8:Out of driver memory"
"Error 9:Expecting a bit number (Bn or Bnn)"
"Error 10:Expecting ’]’"
"Error 11:Expecting an identifier"
"Error 12:Arrays can’t be initialized"
"Error 13:Expecting ’static’"
"Error 14:Expecting ’float’"
"Error 15:Expecting ’;’"
"Error 16:Expecting ’,’"
"Error 17:Expecting ’=’"
"Error 18:Expecting ’{’"
"Error 19:Expecting ’}’"
"Error 20:Expecting a statement"
"Error 21:Expecting ’if’"
"Error 22:Can’t write to input channels"
"Error 23:Expecting a constant expression"
"Error 24:Expecting an integer constant expression"
"Error 25:Reference to an undefined variable"
"Error 26:Array name used in a scalar context"
"Error 27:Scalar name used in an array context"
"Error 28:Variable name used in a custom function

context"
"Error 29:Reference to an undefined custom function"
"Error 30:Can’t have executable code in GLOBALS

definition"
"Error 31:CVT address range is 10 - 511"
"Error 32:Numbered algorithms can only be called

from MAIN"
"Error 33:Reference to an undefined algorithm"
"Error 34:Attempt to redefine an existing symbol

(var or fn)"
"Error 35:Array size is 1 - 1024"
412 Error Messages  Appendix B



"Error 36:Expecting a default PID parameter"
"Error 37:Too many FIFO or CVT writes per scan

trigger"
"Error 38:Statement is too complex"
"Error 39:Unterminated comment"

3085 ’Algorithm too big’ Algorithm exceeded 46K words 
(23K if enabled to swap), or exceeded size specified in 
<swap_size>.

3086 ’Not enough memory to compile Algorithm’ Your 
algorithm’s constructs are using too much translator 
memory. Need more memory in your HP E1406. Try 
breaking your algorithm into smaller algorithms.

3088 ’Too many functions’ Limit is 32 user defined functions

3089 ’Bad Algorithm array index’ Must be from 0 to 
(declared size)-1

3090 ’Algorithm Compiler Internal Error’ Call HP with 
details of operation.

3091 ’Illegal while not initiated’ Send INIT before this 
command

3092 ’No updates in queue’

3093 ’Illegal Variable Type’ Sent ALG:SCAL with identifier 
of array, ALG:ARR with scalar identifier, 
ALG:UPD:CHAN with identifier that is not a channel, 
etc.

3094 ’Invalid Array Size’ Must be 1 to 1024

3095 ’Invalid Algorithm Number’ Must be ’ALG1’ to 
’ALG32’

3096 ’Algorithm Block must contain termination ’ Must 
append a null byte to end of algorithm string within the 
Block Data

3097 ’Unknown SCP.  Not Tested’ May receive if you are 
using a breadboard SCP

3099 ’Invalid SCP for this product’

3100 ’Analog Scan time to big.  Too much settling time’ 
Count of channels referenced by algorithms combined 
with use of SENS:CHAN:SETTLING has attempted to 
build an analog Scan List greater than 64 channels.
Error Messages  413Appendix B



 

ce 

l.

he 

’ 
3101 ’Can’t define new algorithm while running’ Execute 
ABORT, then define algorithm

3102 ’Need ALG:UPD before redefining this algorithm 
again’ Already have an algorithm swap pending for this 
algorithm.

3103 ’Algorithm swapping already enabled; Can’t change 
size’ Only send <swap_size> parameter on initial 
definition.

3104 ’GLOBALS can’t be enabled for swapping’ Don’t send 
<swap_size> parameter for ALG:DEF ’GLOBALS’

3105 ’Invalid SCP switch setting’

3106 ’E1536 debounce - Ch list must contain all lower 4 
and/or upper 4 channels’

3107 ’Channel data direction conflicts with command’ 
Check switches that hardware-define data direction 
(configure channel as input or output).

3108 ’E1536 debounce - each referenced 4 Ch debounce
bank must contain at least one input channel’

3110 ’Channel specified is invalid for RVELocity function.’ 
See the HP E1538A SCP manual.

3111 ’Multiple channels are specified in the reference 
channel list’ See the HP E1538A SCP manual.

3112 ’Channel specified is invalid for RPULse reference 
channel’ See the HP E1538A SCP manual.

3113 ’Channel specified is not on the same SCP as referen
channel’ See the HP E1538A SCP manual.

3114 ’First channel on SCP can not be used in RPULse 
output channel list’ See the HP E1538A SCP manua

3115 ’Channels specified are not in ascending order’ See t
HP E1538A SCP manual.

3116 ’Multiple channels specified are not grouped correctly
See the HP E1538A SCP manual.

3117 ’Grouped channels are not adjacent’ See the 
HP E1538A SCP manual.

3118 ’Incomplete setup information for RPULse function’ 
See the HP E1538A SCP manual.
414 Error Messages  Appendix B



 

 

 

 

.

 

 
t 

T 
3119 RPULse reference channel must be defined as 
RVELocity type’ See the HP E1538A SCP manual.

3120 ’Minimum velocity parameter must not exceed 
maximum velocity parameter’ See the HP E1538A 
SCP manual.

3121 ’Query invalid for current channel usage with the 
configured RPULse mode’ See the HP E1538A SCP
manual.

3122 ’This multiple channel function must not span multiple
SCPs.’ See the HP E1538A SCP manual.

3123 ’E1538 OE switch ON conflicts with this command’ 
See the HP E1538A SCP manual.

3124 ’E1538 OE switch OFF conflicts with this command’
See the HP E1538A SCP manual.

3125 ’E1538 VRS switch setting conflicts with OE switch 
setting’ See the HP E1538A SCP manual.

3126 ’E1538 VRS switch setting conflicts with PU switch 
setting’ See the HP E1538A SCP manual.

3127 ’Undefined E1538 stepper motor mode’ See the 
HP E1538A SCP manual.

3128 ’E1538 Input threshold calibration failure’ See the 
HP E1538A SCP manual.

3129 ’Incompatible Aperture and Range values’

3131 ’First or last channel in specified range is invalid’

3132 ’Channel modifier has illegal value’ Only legal values
for Data Destination modifier are 1=CVT, 2=FIFO, 
3=CVT and FIFO, 0=niether CVT or FIFO

3133 ’Last channel in range must be greater than first 
channel’ 10000:10008 is OK, 10008:10000 is not OK

3134 ’Scan List contains non-input channel’ Scan list 
defined by ROUT:SEQ:DEF can only contain analog
input channel specifiers.

3135 ’A 3-digit and 5-digit channel are both going to same
CVT location. Channels in ROUT:SEQ:DEF Scan Lis
have fixed CVT destinations. On-board 3-digit 
channels can collide with remote 5-digit channel CV
destinations. See “ROUTe:SEQuence:DEFine” on 
Error Messages  415Appendix B



 if 
me 

 
 
 

 
 
 

’

 

D 

10 
ee 

s 

, 
page 291.

3136 ’Only 32 channels may be scanned on each E1529’ 
Maximum Scan List entries per HP E1529A is 32, so
you a channel more than once, you must leave out so
other channel on that HP E1529A.

3137 ’E1539 SCP channel 0 not responding’ Indicates a 
communications error between the HP E1539A SCP
and a Remote Signal Conditioning Unit connected to
the SCP’s channel 0 input. Check the Data Interface
connection as well as the power connection to that 
RSCU.

3138 ’E1539 SCP channel 1 not responding’ Indicates a 
communications error between the HP E1539A SCP
and a Remote Signal Conditioning Unit connected to
the SCP’s channel 1 input. Check the Data Interface
connection as well as the power connection to that 
RSCU.

3140 ’E1529 data not received properly, cable connected?

3141 ’Gain of 0.0 not allowed for E1529 channel.’

3142 ’Custom EU out of date, bridge connection was EXC
when created, now is BRID’

3143 ’Custom EU out of date, bridge connection was DRI
when created, now is EXC’

3144 ’Channels 15722 to 15731 illegal to send to CVT.’ 
Only 502 CVT elements for 512 channels so highest 
channels can’t be stored in CVT, use FIFO instead. S
“ROUTe:SEQuence:DEFine” on page 291.

3145 ’Shunt ON/OFF allows only a single channel per 
E1529’ The shunt cal resistor in an HP E1529A can 
only be connected to one channel at a time. Your 
<ch_list> in the OUTPut:SHUNT contained reference
to more than one channel on the same HP E1529A.

3146 ’Communication error reading E1529 calibration 
constants, defaults used’

3147 ’Cecksum error reading E1529 calibration constants
defaults used’ Do CAL:REMote? and 
CAL:REM:STORe on the affected HP E1529A.
416 Error Messages  Appendix B



Appendix C

Glossary

The following terms have special meaning when related to the HP E1422.

Algorithm In general, an algorithm is a tightly defined 
procedure that performs a task. This manual, uses 
the term to indicate a program executed within 
the HP E1422 that implements a data acquisition 
and control algorithm.

Algorithm Language The algorithm programming language specific to 
the HP E1422. This programming language is a 
subset of the ANSI ’C’ language.

Application Program The program that runs in the VXIbus controller, 
either embedded within the VXIbus mainframe, 
or external and interfaced to the mainframe. The 
application program typically sends SCPI 
commands to configure the HP E1422, define its 
algorithms, then start the algorithms running. 
Typically, once the HP E1422 is running 
algorithms, the application need only "oversee" 
the control application by monitoring the 
algorithms’ status. During algorithm writing, 
debugging, and tuning, the application program 
can retrieve comprehensive data from running 
algorithms.  

Buffer In this manual, a buffer is an area in RAM 
memory that is allocated to temporarily hold:

Data input values that an algorithm will later 
access. This is the Input Channel Buffer.

Data output values from an algorithm until these 
values are sent to hardware output channels. This 
is the Output Channel Buffer.

Data output values from an algorithm until these 
values are read by your application program. This 
is the First-In-First-Out or FIFO buffer.

A second copy of an array variable containing 
updated values until it is "activated" by an update. 
This is "double buffering".

A second version of a running algorithm until it is 
Glossary  417Appendix C



"activated" by an update. This is only for 
algorithms that are enabled for swapping. This is 
also "double buffering".

Control Processor The Digital Signal Processor (DSP) chip that 
performs all of the HP E1422’s internal hardware 
control functions as well as performing the EU 
Conversion process.

DSP Same as Control Processor

EU Engineering Units

EU Conversion Engineering Unit Conversion:  Converting binary 
A/D readings (in units of A/D counts) into 
engineering units of voltage, resistance, 
temperature, strain. These are the "built in" 
conversions (see SENS:FUNC: ...). The 
HP E1422 also provides access to custom EU 
conversions (see SENS:FUNC:CUST in 
command reference and "Creating and Loading 
Custom EU Tables" in Chapter 3).

FIFO The First-In-First-OUT buffer that provides 
output buffering for data sent from an algorithm 
to an application program.

Flash or Flash Memory Non-volatile semiconductor memory used by the 
HP E1422 to store its control firmware and 
calibration constants

RSC unit or RSCU This stands for Remote Signal Conditioning Unit. 
The HP E1529 Remote Strain Conditioning unit 
is an example of an RSC.

Scan List A list of up to 512 channels that is built by the 
ROUTE:SEQUENCE:DEFINE command and 
analog input channels referenced in algorithms as 
they are defined. This list will be scanned each 
time the module is triggered.

SCP Signal Conditioning Plug-on: Small circuit 
boards that plug onto the HP E1422’s main circuit 
board. Available analog input SCPs can provide 
noise canceling filters, signal amplifiers, signal 
attenuators, and strain bridge completion. Analog 
output SCPs are available to provide 
measurement excitation current, controlling 
voltage, and controlling current. Digital SCPs are 
available to both read and write digital states, read 
frequency and counts, and output modulated 
418 Glossary  Appendix C



pulse signals (FM and PWM).

Swapping This term applies to algorithms that are enabled to 
swap. These algorithms can be exchanged with 
another of the same name while the original is 
running. The "new" algorithm becomes active 
after an update command is sent. This "new" 
algorithm may again be swapped with another, 
and so on. This capability allows changing 
algorithm operation without stopping and leaving 
this and perhaps other processes without control.

Terminal Blocks The screw-terminal blocks you connect your 
system field wiring to. The terminal blocks are 
inside the Terminal Module

Terminal Module The plastic encased module which contains the 
terminal blocks you connect your field wiring to. 
The Terminal Module then is plugged into the 
HP E1422’s front panel. 

Update This is an intended change to an algorithm, 
algorithm variable, or global variable that is 
initiated by one of the commands 
ALG:SCALAR, ALG:ARRAY, ALG:DEFINE, 
ALG:SCAN:RATIO, or ALG:STATE. This 
change or "update" is considered to be pending 
until an update command is received. Several 
updates can be sent to the Update Queue, waiting 
for an update command to cause them to take 
effect synchronously. The update commands are 
ALG:UPDATE, and ALG:UPD:CHANNEL.

Update Queue A list of scalar variable values, and/or buffer 
pointer values (for arrays, and swapping 
algorithms) that is built in response to updates 
(see Update). When an update command is sent, 
scalar values and pointer values are sent to their 
working locations.

User Function A function callable from the Algorithm Language 
in the general form <function_name>( 
<expression> ). These user defined functions 
provide advanced mathematical capability to the 
Algorithm Language 
Glossary  419Appendix C



Notes:
420 Glossary  Appendix C



Appendix D

Wiring and Noise Reduction Methods

Separating Digital and Analog SCP Signals
Signals with very fast rise time can cause interference with nearby signal 
paths. This is called cross-talk. Digital signals present this fast rise-time 
situation. Digital I/O signal lines that are very close to analog input signal 
lines can inject noise into them.

To minimize cross-talk you can maximize the distance between analog input 
and digital I/O signal lines. By installing analog input SCPs in positions 0 
through 3, and digital I/O SCPs in positions 4 through 7, you can keep these 
types of signals separated by the width of the HP E1422 module. The signals 
are further isolated because they remain separated on the connector module 
as well. Note that in Figure D-1 , even though only 7 of the eight SCP 
positions are filled, the SCPs present are not installed contiguously, but are 
arranged to provide as much digital/analog separation as possible.

If you have to mix analog input and digital I/O SCPs on the same side, the 
following suggestions will help provide quieter analog measurements.

• Use analog input SCPs that provide filtering on the mixed side.
• Route only high level analog signals to the mixed side.

SCP Pos 0 SCP Pos 1 SCP Pos 2 SCP Pos 3

SCP Pos 4SCP Pos 7 SCP Pos 6 SCP Pos 5

Analog Input and
Output

Digital Input and
Output

HP E1534
PWM, Freq &

Totalizer

HP E1531
Voltage DAC

HP E1533
Digital I/O

empty

Figure D-1. Separating Analog and Digital Signals
Wiring and Noise Reduction Methods  421Appendix D



Recommended Wiring and Noise Reduction Techniques
Unshielded signal wiring is very common in Data Acquisition applications.  
While this worked well for low speed integrating A/D measurements and/or 
for measuring high level signals, it does not work for high speed sampling 
A/Ds, particularly when measuring low level signals like thermocouples or 
strain gage bridge outputs.  Unshielded wiring will pick up environmental 
noise, causing measurement errors.  Shielded, twisted pair signal wiring, 
although it is expensive, is required for these measurements unless an even 
more expensive amplifier-at-the- signal-source or individual A/D at the 
source is used.

Generally, the shield should be connected to ground at the DUT and left 
open at the HP E1422.  Floating DUTs or transducers are an exception. 
Connect the shield to HP E1422 GND or GRD terminals for this case, 
whichever gives the best performance.  This will usually be the GND 
terminal.  A single point shield to ground connection is required to prevent 
ground loops.  This point should be as near to the noise source as possible 
and this is usually at the DUT.

Wiring Checklist The  following lists some recommended wiring techniques.

1. Use individually shielded, twisted-pair wiring for each channel.

2. Connect the shield of each wiring pair to the corresponding Guard 
(G) terminal on the Terminal Module .

3. The Terminal Module is shipped with the Ground-Guard  
(GND-GRD) shorting jumper installed for each channel. These may 
be left installed or removed, dependent on the following conditions:

a. Grounded Transducer with shield connected to ground at the 
transducer: Low frequency ground loops (DC and/or 50/60Hz) 
can result if the shield is also grounded at the Terminal Module 
end. To prevent this, remove the GND-GRD jumper for that 
channel.

b.  Floating Transducer with shield connected to the transducer 
at the source: In this case, the best performance will most likely 
be achieved by leaving the GND-GRD jumper in place.

3. In general, the GND-GRD jumper can be left in place unless it is 
necessary to break low frequency (below 1 kHz) ground loops.
422 Wiring and Noise Reduction Methods  Appendix D



422 
ld 

r all 
hich 

the 
to 
d 

nd 
nry 

s) 

tight. 

lines 
HP E1422 Guard
Connections

The HP E1422 guard connection provides a 10 KΩ current limiting resistor 
between the guard terminals (G) and E1422 chassis ground for each 8 
channel SCP bank.  This is a safety device for the case where the Device 
Under Test (DUT) isn’t actually floating, the shield is connected to the DUT 
and also connected to the HP E1422 guard terminal (G).  The 10 KΩ resistor 
limits the ground loop current, which has been known to burn out shields.  
This also provides 20 KΩ isolation between shields between SCP banks 
which helps isolate the noise source.

Common Mode
Voltage Limits

You must be very careful not to exceed the maximum common mode 
voltage referenced to the card chassis ground of ±16 volts (±60 volts with 
the HP E1513A Attenuator SCP). There is an exception to this when high 
frequency (1 kHz - 20 kHz) common mode noise is present (see “HP E1
Noise Rejection” below). Also, if the DUT is not grounded, then the shie
should be connected to the E1422 chassis ground.

When to Make
Shield Connections

It is not always possible to state positively the best shield connection fo
cases. Shield performance depends on the noise coupling mechanism w
is very difficult to determine. The above recommendations are usually 
best wiring method, but if feasible, experiment with shield connections 
determine which provides the best performance for your installation an
environment.

 NOTE For a thorough, rigorous discussion of measurement noise, shielding, a
filtering, see “Noise Reduction Techniques in Electronic Systems” by He
W. Ott of Bell Laboratories, published by Wiley & Sons, ISBN 
0-471-85068-3.

Noise Due to Inadequate Card Grounding
If either or both of the HP E1422 and HP E1482 (MXI Extender Module
are not securely screwed into the VXIbus Mainframe, noise can be 
generated. Make sure that both screws (top and bottom) are screwed in 
If not, it is possible that CVT data could be more noisy than FIFO data 
because the CVT is located in A24 space, the FIFO in A16 space; more 
moving could cause noisier readings.
Wiring and Noise Reduction Methods  423Appendix D



HP E1422 Noise Rejection

Normal Mode Noise
(Enm)

This noise is actually present at the signal source and is a differential noise 
(Hi to Lo). It is what is filtered out by the buffered filters on the HP E1502, 
E1503, E1508, and E1509 SCPs.

Common Mode
Noise (Ecm)

This noise is common to both the Hi and Lo differential signal inputs. Low 
frequency Ecm is very effectively rejected by a good differential 
instrumentation amplifier, and it can be averaged out when measured 
through the Direct Input SCP (HP E1501). However, high frequency Ecm is 
rectified and generates an offset with the amplifier and filter SCPs (such as 
HP E1502, HP E1503, HP E1508, and HP E1509). This is since these SCPs 
have buffer-amplifiers on board and is a characteristic of amplifiers. The 
best way to deal with this is to prevent the noise from getting into the 
amplifier.

Keeping Common
Mode Noise out of

the Amplifier

Most common mode noise is about 60 Hz, so the differential amplifier 
rejection is very good. The amplifier Common Mode Noise characteristics 
are:

120 dB flat to 300 Hz, then 20 dB/octave rolloff

The HP E1422 amplifiers are selected for low gain error, offset, temperature 
drift, and low power. These characteristics are generally incompatible with 
good high frequency CMR performance. More expensive, high performance 
amplifiers can solve this problem, but they aren’t required for many systems.

Shielded, twisted pair lead wire generally does a good job of keeping high 
frequency common mode noise out of the amplifier, provided the shield is 
connected to the HP E1422 chassis ground through a very low impedance. 
(Not via the guard terminal - The HP E1422 guard terminal connection 
shown in the HP E1422 User’s manual does not consider the high frequency 
Ecm problem, and is there to limit the shield current and to allow the DUT 
to float up to some DC common mode voltage subject to the maximum ±16 
volt input specification limit.

This conflicts with the often recommended good practice of grounding the 
shield at the signal source and only at that point to eliminate line frequency 
ground loops, which can be high enough to burn up a shield. We recommend 
that you follow this practice, and if you see high frequency common mode 
noise (or suspect it), tie the shield to the HP E1422 ground through a 0.1 µF 
capacitor. At high frequencies, this drives the shield voltage to 0 volts at the 
HP E1422 input. Due to inductive coupling to the signal leads, the Ecm 
voltage on the signal leads is also driven to zero.
424 Wiring and Noise Reduction Methods  Appendix D



Appendix E

Generating User Defined Functions

Introduction
The HP E1422A has a limited set of mathematical operations such as add, 
subtract, multiply, and divide.  Many control applications require functions 
such as square root for calculating flow rate or a trigonometric function to 
correctly transition motion of moving object from a start to ending position.  
In order to represent a sine wave or other transcendental functions, one could 
use a power series expansion to approximate the function using a finite 
number of algebraic expressions.  Since the above mentioned operations can 
take from 1.5usec to 4usec for each floating point calculation, a complex 
waveform such as sine(x) could take more than 100usec to get the desired 
result.  A faster solution is desirable and available.

The HP E1422 provides a solution to approximating such complex 
waveforms by using a piece-wise linearization of virtually any complex 
waveform.  The technique is simple.  The Universal Instrument Drivers CD 
Rom supplied with your HP E1422 contains a ’C’ program which calculates 
128 Mx+B segments over a specified range of values for the desired 
function.  You supply the function; the program generates the segments in a 
table.  The resulting table can be downloaded into the HP E1422’s RAM with 
the ALG:FUNC:DEF command where you can select any desired name of 
the function(i.e. sin(x), tan(x), etc.).  Up to 32 functions can be created for 
use in algorithms.  At runtime where the function is passed an ’x’ value, the 
time to calculate the Mx+B segmented linear approximation is 
approximately 18µseconds.

The HP E1422 actually uses this technique to convert volts to temperature, 
strain, etc. The accuracy of the approximation is really based upon how well 
you select the range over which the table is built.  For thermocouple 
temperature conversion, the HP E1422 fixes the range to the lowest A/D 
range(+/-64millivolts) so that small microvolt measurements yield the 
proper resolution of the actual temperature for a non-linear transducer. In 
addition, the HP E1422 permits you to create Custom Engineering Unit 
conversion for your transducer so that when the voltage measurement is 
actually made the EU conversion takes place(see SENS:FUNC:CUST ).  
Algorithms deal with the resulting floating point numbers generated during 
the measurement phase and may require further complex mathematical 
operations to achieve the desired result.

With some complex waveforms, you may actually want to break up the 
waveform into several functions in order to get the desired accuracy.  For 
example, suppose you need to generate a square root function for both 
voltage and strain calculations.  The voltages are only going to range from 0 
to +/-16volts, worst case.  The strain measurements return numbers in 
microstrain which range in the 1000’s.  Trying to represent the square root 
function over the entire range would severely impact the accuracy of the 
Generating User Defined Functions  425Appendix E



approximation. Remember, the entire range is broken up into only 128 
segments of Mx+B operations.  If you want accuracy, you MUST limit the 
range over which calculations are made.  Many transcendental functions are 
simply used as a scaling multiplier.  For example, a sine wave function is 
typically created over a range of 360 degrees or 2*PI radians.  After which, 
the function repeats itself.  It’s a simple matter to make sure the ’x’ term is 
scaled to this range before calculating the result.  This concept should be 
used almost exclusively to obtain the best results.

Haversine Example.
The following is an example of creating a haversine function (a sine wave 
over the range of -PI/2 to PI/2).  The resulting function represents a fairly 
accurate approximation of this non-linear waveform when you limit the 
range as indicated.  Since the tables must be built upon binary 
boundaries(i.e. .125, .25, .5, 1, 2, 4, etc.) and since PI/2 is a number greater 
than 1 but less than 2, the next binary interval to include this range will be 
2.  Another requirement for building the table is that the waveform range 
MUST be centered around 0( i.e. symmetrical about the X-axis).   If the 
desired function is not defined on one side or the other of the Y-axis, then 
the table is right or left shifted by the offset from X=0 and the table values 
are calculated  correctly, but the table is built as though it were centered 
about the X-axis.  For the most part, you can ignore these last couple of 
sentences if it does not make sense to you.  The only reason its brought up 
here is that your accuracy may suffer the farther away from the X=0 point 
you get unless you understand what resolution is available and how much 
non-linearity is present in your waveform.  We’ll talk about that in the 
"Limitations" section, later.

Figure 1 shows the haversine function as stated above.  This type of 
waveform is typical of the kind of acceleration and deceleration one wants 
when moving an object from one point to another.  The desired beginning 
point would be the location at -PI/2 and the ending point would be at PI/2.  
With the desired range spread over +/- PI/2, the 128 segments are actually 
divided over the range of +/- 2.  Therefore, the 128 Mx+B line segments are 
divided equally on both sides of X=0: 64 segments for 0..2 and 64 segments 
for -2..0.
426 Generating User Defined Functions  Appendix E



A typical use of this function would be to output an analog voltage or current 
at each Scan Trigger of the HP E1422 and over the range of the haversine.  
For example, suppose you wanted a new position of an analog output to 
move from 1ma to 3ma over a period of 100msec.  If your TRIG:TIMER 
setting or your EXTernal trigger was set to 2msec, then you would want to 
force 50 intervals over the range of the haversine.  This can be easily done 
by using a scalar variable to count the number of times the algorithm has 
executed and to scale the variable value to the -PI/2 to PI/2 range.  3ma is 
multiplied times the custom function result over each interval which will 
yield the shape of the haversine (.003*sin(x)+.001).  This is illustrated in the 
example below.  The program (sine_fn.cpp on the CD illustrates the actual 
program used to generate this haversine function.  You need only supply the 
algebraic expression in my_function(), the desired range over which to 
evaluate the function(which determines the table range), and the name of the 
function.  The Build_table() routine creates the table for the function, and the 
ALG:FUNC:DEF writes that table into HP E1422 memory.  The table 
MUST be built and downloaded BEFORE trying to use the function.

The following is a summary of what commands and parameters are used in 
the program example. Table 1 shows some examples of the accuracy of the 
custom function with various input values compared to an evaluation of the 
actual transcendental function found in ’C’.  Please note that the Mx+B 
segments are located on boundaries specified by 2/64 on each side of X=0.  
This means that if you select the exact input value that was used for the 
beginning of each segment, you WILL get exactly the calculated value of 
that function at that point.  Any point between segments will be an 
approximation dependent upon the linearity of that segment.  Also note that 
values of X = 2 and X = -2 will result in Y=infinity. 

Figure E-1. A Haversine Function
Generating User Defined Functions  427Appendix E



Table 6-2. ’C’ Sin(x) Vs. HP E1422 Haversine Function

Limitations
As stated earlier, there are limitations to using this custom function 
technique.  These limitations are directly proportional to the non-linearity of 
the desired waveform.  For example, suppose you wanted to represent the 
function X*X*X over a range of +/-1000. The resulting binary range would 
be +/-1024, and the segments would be partitioned at 1024/64 intervals.  
This means that every 16 units would yield an Mx+B calculation over that 
segment.  As long as you input numbers VERY close to those cardinal 
points, you will get good results.  Strictly speaking, you will get perfect 
results if you only calculate at the cardinal points, which may be reasonable 
for your application if you limit your input values to exactly those 128 
points.

You may also shift the waveform anywhere along the X-axis, and 
Build_table() will provide the necessary offset calculations to generate the 
proper table.  Be aware too that shifting the table out to greater magnitudes 
of X may also impact the precision of your results dependent upon the 
linearity of your waveform. Suffice it to say that you will get your best 
results and it will be easiest for you to grasp what your doing if you stay near 
the X=0 point since most of the results of your measurements will have 
1e-6..16 values for volts.

One final note. You may see truncation errors in the fourth digit of your 
results. This is because only 15 bits of your input value is sent to the 
function. This occurs because the same technique used for Custom EU 
conversion is used here, and the method assumes input values are from the 
16 bit A/D (15 bits = sign bit). This is evident in Table 1 where the first and 
last entries return ±0.9999 rather than ±1. For most applications this 
accuracy should be more than adequate.

’C’ sin(-1.570798) -1.000000 ’HP E1422’ sin(-1.570798) -0.999905 

’C’ sin(-1.256639) -0.951057 ’HP E1422’ sin(-1.256639) -0.950965 

’C’ sin(-0.942479) -0.809018 ’HP E1422’ sin(-0.942479) -0.808944 

’C’ sin(-0.628319) -0.587786 ’HP E1422’ sin(-0.628319) -0.587740 

’C’ sin(-0.314160) -0.309017 ’HP E1422’ sin(-0.314160) -0.308998 

’C’ sin(0.000000) 0.000000 ’HP E1422’ sin(0.000000) 0.000000 

’C’ sin(0.314160) 0.309017 ’HP E1422’ sin(0.314160) 0.308998 

’C’ sin(0.628319) 0.587786 ’HP E1422’ sin(0.628319) 0.587740 

’C’ sin(0.942479) 0.809018 ’HP E1422’ sin(0.942479) 0.808944 

’C’ sin(1.256639) 0.951057 ’HP E1422’ sin(1.256639) 0.950965 

’C’ sin(1.570798) 1.000000 ’HP E1422’ sin(1.570798) 0.999905 
428 Generating User Defined Functions  Appendix E



29
431
438

on 
Appendix F

Example PID Algorithm Listings

This appendix includes listings of the built-in PIDA and PIDB,as well as the 
more advanced PIDC which can be down loaded as a custom algorithm.

• PIDA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    4
• PIDB Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
• PIDC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    

PIDA Algorithm
Figure F-1 shows the block diagram of the PIDA algorithm. 

PIDA algorithm implements the classic PID controller. This implementati
was designed to be fast. In order to be fast, this algorithm provides no 
clipping limit, alarm limits, status management, or CVT/FIFO 
communication (History Modes). The algorithm performs the following 
calculations each time it is executed:

Error = Setpoint - <inp_chan>
I_out = I_out + I_factor * Error
<outp_chan> = P_factor * Error + I_out + D_factor * (Error - Error_old)
Error_old = Error.

PIDA Source Listing
/********************************************************************************************/
/*  I/O Channels */
/*  Must be defined by the user */
/* */

Setpoint
Variable

+ +

+

+

-

<outp_chan>
channel

<inp_chan>
channel

process

P_factor
Variable

D_factor
Variable

I_factor
Variable

Σ ΣI_out
variable

Error
variable

Figure F-1. The Simple PID Algorithm "PIDA"
Example PID Algorithm Listings  429Appendix F



/* inchan - Input channel name */
/* outchan - Output channel name */
/* */
/********************************************************************************************/
/* */
/********************************************************************************************/
/* PID algorithm for E1415A controller module. This algorithm is called */
/* once per scan trigger by main().  It performs Proportional, Integral */
/* and Derivative control. */
/* */
/* */
/* The output is derived from the following equations: */
/* */
/* PID_out = P_out + I_out + D_out */
/* P_out = Error * P_factor */
/* I_out = I_out + (Error * I_factor) */
/* D_out = ((Error - Error_old) * D_factor) */
/* Error = Setpoint - PV */
/* */
/* where: */
/*   Setpoint is the desired value of the process variable (user supplied) */
/*   PV is process variable measured on the input channel */
/*   PID_out is the algorithm result sent to the output channel */
/*   P_factor, I_factor, and D_factor are the PID constants(user supplied) */
/*                                                                           */
/*                                                                           */
/* At startup the output will abruptly change to P_factor*Error */
/*                                                                           */
/*                                                                           */
/********************************************************************************************/
/* */
/* User determined control parameters */
    static float Setpoint = 0; /* The setpoint */
    static float P_factor = 1; /* Proportional control constant */
    static float I_factor = 0; /* Integral control constant */
    static float D_factor = 0; /* Derivative control constant */
/* */
/*  Other Variables */
    static float I_out; /* Integral term */
    static float Error; /* Error term                      */
    static float Error_old; /* Last Error - for derivative */
/* */
/*PID algorithm code: */
/* Begin PID calculations */
/* First, find the Process Variable "error" */
/* This calculation has gain of minus one (-1) */
    Error = Setpoint - inchan;
/* On the first trigger after INIT, initialize the I and D terms */
    if (First_loop)
    {
/* Zero the I term and start integrating */
        I_out = Error * I_factor;
/* Zero the derivative term */
    Error_old = Error;
    }
/* On subsequent triggers, continue integrating */
    else /* not First trigger */
    {
430 Example PID Algorithm Listings  Appendix F



I_out = Error * I_factor + I_out;
    }
/* Sum PID terms */
    outchan = Error * P_factor + I_out + D_factor * (Error 
- Error_old);
/* Save values for next pass */
    Error_old = Error;

PIDB Algorithm
Figure F-2 shows the block diagram of a more advanced algorithm that is 
favored in process control because of the flexibility allowed by its two 
differential terms. The "D" differential term is driven by changes in the 
process input measurement. The "SD" differential term is driven by changes 
in the setpoint variable value.

Clipping Limits The PIDB algorithm provides clipping limits for its I, D, SD terms and the 
value sent to <outp_chan>. Values for these terms are not allowed to range 
outside of the set limits. The variables that control clipping are:

I term limits; I_max, and I_min
D term limits; D_max, and D_min
SD term limits; SD_max, and SD_min
<outp_chan> limits; Out_max, and Out_min

Alarm Limits The PIDB algorithm provides Alarm Limits for the process variable PV and 
the Error term variable Error. If these limits are reached, the algorithm sets 

Setpoint
Variable +

+

+

+ +

-

<outp_chan>
channel

<inp_chan>
channel

process

P_factor
Variable

Man_state
Variable

status .B4

Man_out
Variable

SD_factor
Variable

D_factor
Variable

I_factor
Variable

Σ ΣI_out
variable

D_out
variable

Error
variable

clip limits
status .B0

clip limits
status .B3

clip limits
status .B1

slew rate limited by
Man_inc variable

clip limits
status .B2

alarm limits
status .B6

SD_out
variable

manual

auto

Figure F-2. The Advanced Algorithm "PIDB"
Example PID Algorithm Listings  431Appendix F



ces
VT

T 
rites 

 of 
the value of <alarm_chan> true and generates a VXIbus interrupt. The 
variables that control alarm limits are:

Process Variable (from <inp_chan>); PV_max, and PV_min
Error term alarm limits; Error_max, and Error_min

The max and min limits for clipping and alarms are set to 9.9E+37 and 
-9.9E+37 respectively when the algorithm is defined. This effectively turns 
the limits off until you change these values with the ALG:SCALAR and 
ALG:UPDATE commands as described in "Pre-setting PID Variables and 
Coefficients" later in this section.

Manual Control The PIDB algorithm provides for manual control with "bumpless" transfer 
between manual and automatic control. The variables that control the 
manual mode are:

Auto/Manual control; Man_state (0 = automatic (default), 1 = manual)
 Manual output control; Man_out (defaults to current auto value)
 Manual control slew rate;Man_inc (defaults to 9.99E+37 (fast change))

Use the ALG:SCALAR and ALG:UPDATE commands to change the 
manual control variables before or after the algorithm is running.

Status Variable The PIDB algorithm uses 7 bits in a status variable (Status) to record the 
state of clipping and alarm limits, and the automatic/manual mode. When a 
limit is reached or the manual mode is set, the algorithm sets a status bit to 1.

Output (<outp_chan>) at clipping limit; Status.B0
I term (I_out) at clipping limit; Status.B1
D term (D_out) reached at limit; Status.B2
SD term (SD_out) at clipping limit; Status.B3
Control mode (Man_state) is manual; Status.B4
Error term (Error) out of limits; Status.B5
Process Variable (<inp_chan>) out of limits; Status.B6

History Mode The PIDB algorithm provides two modes of reporting the values of its 
operating variables. A variable History_mode controls the two modes. The 
default history mode (History_mode = 0) places the following algorithm 
values into elements of the Current Value Table (the CVT):

Process Variable (<inp_chan>) value to CVT element (10 * n) + 0
 Error Term variable (Error) value to CVT element (10 * n) + 1
 Output (<outp_chan>) value to CVT element (10 * n) + 2
 Status word bits 0 through 6 (Status) to CVT element (10 * n) + 3

Where n is the number of the algorithm from ’ALGn’ 
So ALG1 places values into CVT elements 10 through 13, ALG2 pla
values in CVT elements 20 through 23 ... ALG32 places values into C
elements 320 through 323

When you set History_mode to 1, the operating values are sent to the CV
as above and they are sent to the FIFO buffer as well. The algorithm w
a header entry first. The header value is ( n * 256 ) + 4, where n is the 
algorithm number from ’ALGn’, and the number 4 indicates the number
FIFO entries that follow for this algorithm. This identifies which PIDB 
432 Example PID Algorithm Listings  Appendix F



algorithm the 5 element FIFO entry is from.

PIDB Source Listing
/********************************************************************************************/
/*  PID_B */
/********************************************************************************************/
/*  I/O Channels */
/*  Must be defined by the user */
/* */
/* inchan - Input channel name */
/* outchan - Output channel name */
/* alarmchan  - Alarm channel name */
/* */
/********************************************************************************************/
/* */
/********************************************************************************************/
/* PID algorithm for E1415A controller module.  This algorithm is called */
/* once per scan trigger by main().  It performs Proportional, Integral */
/* and Derivative control. */
/* */
/* */
/* The output is derived from the following equations: */
/* */
/* PID_out = P_out + I_out + D_out + SD_out */
/* P_out = Error * P_factor */
/* I_out = I_out + (Error * I_factor) */
/* D_out = ((PV_old - PV) * D_factor) */
/* SD_out = (Setpoint - Setpoint_old) * SD_factor    */
/* Error = Setpoint - PV */
/* */
/* where: */
/*   Setpoint is the desired value of the process variable (user supplied) */
/*   PV is the process variable measured on the input channel */
/*   PID_out is the algorithm result sent to the output channel */
/*   P_factor, I_factor, D_factor, and SD_factor are the PID constants */
/*  (user supplied)       */
/*      */
/* Alarms may be generated when either the Process Variable or the */
/* error exceeds user supplied limits.  The alarm condition will cause */
/* an interrupt to the host computer, set the (user-specified) alarm */
/* channel output to one (1), and set a bit in the Status variable to */
/* one (1).  The interrupt is edge-sensitive. ( It will be asserted only */
/* on the transition into the alarm state.)  The alarm channel digital */
/* output will persist for the duration of all alarm conditions.  The */
/* Status word bits will also persist for the alarm duration.  No user */
/* intervention is required to clear the alarm outputs. */
/* */
/* This version provides for limiting (or clipping) of the Integral, */
/* Derivative, Setpoint Derivative, and output to user specified limits. */
/* The Status Variable indicates when terms are being clipped. */
/*   */
/* Manual control is activated when the user sets the Man_state variable */
/* to a non-zero value.  The output will be held at its last value.  The */
/* user can change the output by changing the Man_out variable.  User */
/* initiated changes in Man_out will cause the output to slew to the */
/* Man_out value at a rate of Man_inc per scan trigger. */
/* */
/* Manual control causes the Setpoint to continually change to match */
Example PID Algorithm Listings  433Appendix F



/* the Process Variable, and the Integral term to be constantly updated     */
/* to the output value such that a return to automatic control will */
/* be bumpless and will use the current Process Variable value as the */
/* new setpoint. */
/* The Status variable indicates when the Manual control mode is active. */
/*  */
/* At startup in the Manual control mode, the output will slew to Man_out */
/* at a rate of Man_inc per scan trigger. */
/*     */
/* At startup, in the Automatic control mode, the output will abruptly */
/* change to P_factor * Error. */
/*       */
/* For process monitoring, data may be sent to the FIFO and current */
/* value table (CVT).  There are two levels of data logging, controlled */
/* by the History_mode variable.  The location in the CVT is based */
/* on ’n’, where n is the algorithm number (as returned by ALG_NUM, for*/
/* example).  The first value is placed in the (10 * n)th 32-bit word of */
/* the CVT.  The other values are written in subsequent locations. */
/*     */
/*  History_mode = 0:  Summary to CVT only.  In this mode, four values */
/*    are output to the CVT. */
/*    */
/*        Location      Value */
/*            0         Input                         */
/*            1         Error         */
/*            2         Output */
/*            3         Status */
/* */
/*  History_mode = 1:  Summary to CVT and FIFO.  In this mode, the four*/
/*    summary values are written to both the CVT and FIFO.  A header */
/*    tag (256 * n + 4) is sent to the FIFO first, where n is the Algorithm */
/*    number (1 - 32).<N> */
/*      */
/********************************************************************************************/
/*        */
/* User determined control parameters */
    static float Setpoint = 0; /* The setpoint */
    static float P_factor = 1; /* Proportional control constant */
    static float I_factor = 0; /* Integral control constant       */
    static float D_factor = 0; /* Derivative control constant     */
    static float Error_max = 9.9e+37; /* Error alarm limits           */
    static float Error_min = -9.9e+37;
    static float PV_max = 9.9e+37; /* Process Variable alarm limits   */
    static float PV_min = -9.9e+37;
    static float Out_max = 9.9e+37; /* Output clip limits              */
    static float Out_min = -9.9e+37;
    static float D_max = 9.9e+37; /* Derivative clip limits          */
    static float D_min = 9.9e+37;
    static float I_max = 9.9e+37; /* Integral clip limits            */
    static float I_min = -9.9e+37;
    static float Man_state = 0; /* Activates manual control        */
    static float Man_out = 0; /* Target Manual output value      */
    static float Man_inc = 9.9e+37;/* Manual outout change increment */
    static float SD_factor = 0; /* Setpoint Derivative constant */
    static float SD_max = 9.9e+37; /* Setpoint Derivative clip limits */
    static float SD_min = 9.9e+37;
    static float History_mode = 0; /* Activates fifo data logging */
/* */
434 Example PID Algorithm Listings  Appendix F



/*  Other Variables */
    static float I_out; /* Integral term */
    static float D_out; /* Derivative term */
    static float Error; /* Error term */
    static float PV_old; /* Last process variable */
    static float Setpoint_old; /* Last setpoint - for derivative */
    static float SD_out; /* Setpoint derivative term */
    static float Status = 0; /* Algorithm status word */

/*  */
/*  B0 - PID_out at clip limit */
/*  B1 - I_out at clip limit */
/*  B2 - D_out at clip limit */
/*  B3 - SD_out at clip limit */
/*  B4 - in Manual control mode */
/*  B5 - Error out of limits */
/*  B6 - PV out of limits */
/*  others - unused */
/* */

/* */
/*PID algorithm code: */
/* Test for Process Variable out of limits */
    if ( (inchan  >>  PV_max) || ( PV_min  >>  inchan ) ) /* PV alarm test */
    {

if ( !Status.B6 )
{
  Status.B6 = 1;
  alarmchan = 1;
  interrupt();
}

    }
    else
    {

Status.B6 = 0;
    }
/* Do this when in the Manual control mode */
  if ( Man_state )
  {
/* Slew output towards Man_out */
    if (Man_out  >>  outchan + abs(Man_inc))
    {

outchan = outchan + abs(Man_inc);
    }
    else if (outchan  >>  Man_out + abs(Man_inc))
    {

outchan = outchan - abs(Man_inc);
    }
    else
    {

outchan = Man_out;
    }
/* Set manual mode bit in status word */
    Status.B4 = 1;
/* No error alarms while in Manual mode */
    Status.B5 = 0;
/* In case we exit manual mode on the next trigger */
/* Set up for bumpless transfer */
    I_out = outchan;
    Setpoint = inchan;
Example PID Algorithm Listings  435Appendix F



    PV_old = inchan;
    Setpoint_old = inchan;
  }
/* Do PID calculations when not in Manual mode */
  else  /* if ( Man_state )  */
  {
    Status.B4 = 0;
/* First, find the Process Variable "error" */
/* This calculation has gain of minus one (-1) */
    Error = Setpoint - inchan;
/* Test for error out of limits */
    if ( (Error  >>  Error_max) || (Error_min  >>  Error) )
    {
    if ( !Status.B5 )
    {
      Status.B5 = 1;
      alarmchan = 1;
      interrupt();
    }
    }
    else
    {

Status.B5 = 0;
    }
/* On the first trigger after INIT, initialize the I and D terms */
    if (First_loop)
    {
/* Zero the I term and start integrating */
        I_out = Error * I_factor;
/* Zero the derivative terms */
    PV_old = inchan;

Setpoint_old = Setpoint;
    }
/* On subsequent triggers, continue integrating */
    else /* not First trigger */
    {

I_out = Error * I_factor + I_out;
    }
/* Clip the Integral term to specified limits */
    if ( I_out   >>  I_max )
    {

I_out = I_max;
Status.B1=1;

    }
    else if ( I_min  >>  I_out )
    {

I_out = I_min;
Status.B1=1;

    }
    else
    {

Status.B1 = 0;
    }
/* Calculate the Setpoint Derivative term */
    SD_out = SD_factor * ( Setpoint - Setpoint_old );
/* Clip to specified limits */
    if ( SD_out  >>  SD_max )/* Clip Setpoint derivative */
    {
436 Example PID Algorithm Listings  Appendix F



    SD_out = SD_max;
    Status.B3=1;
    }
    else if ( SD_min  >>  SD_out )
    {
    SD_out = SD_min;
    Status.B3=1;
    }
    else
    {

Status.B3 = 0;
    }
/* Calculate the Error Derivative term */
    D_out = D_factor *( PV_old - inchan );
/* Clip to specified limits */
    if ( D_out   >>  D_max )/* Clip derivative */
    {

D_out = D_max;
Status.B2=1;

    }
    else if ( D_min  >>  D_out )
    {

D_out = D_min;
Status.B2=1;

    }
    else
    {

Status.B2 = 0;
    }
/* Sum PID&SD terms */
    outchan = Error * P_factor + I_out + D_out + SD_out;
/* Save values for next pass */
    PV_old = inchan;

Setpoint_old = Setpoint;
/* In case we switch to manual on the next pass */
/* prepare to hold output at latest value */
    Man_out = outchan;
  }  /* if ( Man_state ) */
/* Clip output to specified limits */
    if ( outchan   >>  Out_max )
    {

outchan = Out_max;
Status.B0=1;

    }
    else if ( Out_min  >>  outchan )
    {

outchan = Out_min;
Status.B0=1;

    }
    else
    {

Status.B0 = 0;
    }
/* Clear alarm output if no alarms */
    if (!(Status.B6 || Status.B5) ) alarmchan = 0;
/* Log appropriate data */
    if ( History_mode )
    {
Example PID Algorithm Listings  437Appendix F



/* Output summary to FIFO & CVT */
writefifo( (ALG_NUM*256)+4 );
writeboth( inchan, (ALG_NUM*10)+0 );
writeboth( Error, (ALG_NUM*10)+1);
writeboth( outchan, (ALG_NUM*10)+2);
writeboth( Status, (ALG_NUM*10)+3  );

    }
    else
    {
/* Output summary to CVT only */

writecvt( inchan, (ALG_NUM*10)+0 );
writecvt( Error, (ALG_NUM*10)+1);
writecvt( outchan, (ALG_NUM*10)+2);
writecvt( Status, (ALG_NUM*10)+3  );

    }

PIDC Algorithm
PIDC is very similar to PIDB with the addition of extended history mode. 
See comments in source code below.

PIDC Source Listing
/********************************************************************************************/
/*  PID_C */
/********************************************************************************************/
/*  I/O Channels */
/*  Must be defined by the user */
/*                  */
/* inchan - Input channel name      */
/* outchan - Output channel name             */
/* alarmchan  - Alarm channel name          */
/*                      */
/********************************************************************************************/
/*                    */
/********************************************************************************************/
/* PID algorithm for E1415A controller module.  This algorithm is called */
/* once per scan trigger by main().  It performs Proportional, */
Integral      */
/* and Derivative control.                                                   */
/*                                                                           */
/*                                                                           */
/* The output is derived from the following equations:  */
/*                                                                           */
/* PID_out = P_out + I_out + D_out + SD_out         */
/* P_out = Error * P_factor                            */
/* I_out = I_out + (Error * I_factor)      */
/* D_out = ((PV_old - PV) * D_factor) */
/* SD_out = (Setpoint - Setpoint_old) * SD_factor */
/* Error = Setpoint - PV           */
/* */
/* where:                                   */
/*   Setpoint is the desired value of the process variable (user supplied)   */
/*   PV is the process variable measured on the input channel */
/*   PID_out is the algorithm result sent to the output channel */
438 Example PID Algorithm Listings  Appendix F



/*   P_factor, I_factor, D_factor, and SD_factor are the PID constants */
/*  (user supplied) */
/* */
/*  Alarms may be generated when either the ProcessVariable or the */
/*  error exceeds user supplied limits. */
/*  The alarm condition will cause an interrupt to the host computer, */
/*  set the (user-specified) alarm channel output to one (1), and set a bit */
/*  in the Status variable to one (1). */
/*  The interrupt is edge-sensitive. ( It will be asserted only */
/* on the transition into the alarm state.)  The alarm channel digital */
/* output will persist for the duration of all alarm conditions.  The */
/* Status word bits will also persist for the alarm duration.  No user */
/* intervention is required to clear the alarm outputs. */
/* */
/* This version provides for limiting (or clipping) of the Integral, */
/* Derivative, Setpoint Derivative, and output to user specified limits. */
/* The Status Variable indicates when terms are being clipped. */
/* */
/* Manual control is activated when the user sets the Man_state variable */
/* to a non-zero value.  The output will be held at its last value.  The */
/* user can change the output by changing the Man_out variable.  User */
/* initiated changes in Man_out will cause the output to slew to the */
/* Man_out value at a rate of Man_inc per scan trigger. */
/* */
/* Manual control causes the Setpoint to continually change to match */
/* the Process Variable, and the Integral term to be constantly updated */
/* to the output value such that a return to automatic control will */
/* be bumpless and will use the current Process Variable value as the */
/* new setpoint. */
/* The Status variable indicates when the Manual control mode is active. */
/* */
/* At startup in the Manual control mode, the output will be held at */
/* its current value. */
/* */
/* At startup, in the Automatic control mode, the output will slew */
/* from its initial value towards P_factor * Error at a rate determined */
/* by the Integral control constant (I_out is initialized to cancel P_out). */
/* */
/* For process monitoring, data may be sent to the FIFO and current */
/* value table (CVT).  There are three levels of data logging, controlled */
/* by the History_mode variable.  The location in the CVT is based */
/* on ’n’, where n is the algorithm number (as returned by ALG_NUM, for*/
/* example).  The first value is placed in the (10 * n)th 32-bit word of */
/* the CVT.  The other values are written in subsequent locations. */
/* */
/*  History_mode = 0:  Summary to CVT only.  In this mode, four values */
/*    are output to the CVT. */
/* */
/*        Location      Value */
/*            0         Input */
/*            1         Error */
/*            2         Output */
/*            3         Status */
/* */
/*  History_mode = 1:  Summary to CVT and FIFO.  In this mode, the four*/
/*    summary values are written to both the CVT and FIFO.  A header */
/*    tag (256 * n + 4) is sent to the FIFO first. */
/* */
Example PID Algorithm Listings  439Appendix F



/*  History_mode = 2:  All to FIFO and CVT.  In this mode, nine values */
/*    are output to both the CVT and FIFO.  A header tag (256 * n + 9) */
/*    is sent to the FIFO first. */
/*  */
/*        Location      Value */
/*            0         Input */
/*            1         Error */
/*            2         Output */
/*            3         Status */
/*            4         Setpoint */
/*            5         Proportional term */
/*            6         Integral term */
/*            7         Derivative term */
/*            8         Setpoint Derivative term */
/* */
/********************************************************************************************/
/* */
/* User determined control parameters */
    static float Setpoint = 0; /* The setpoint */
    static float P_factor = 1; /* Proportional control constant */
    static float I_factor = 0; /* Integral control constant */
    static float D_factor = 0; /* Derivative control constant */
    static float Error_max = 9.9e+37; /* Error alarm limits */
    static float Error_min = -9.9e+37;
    static float PV_max = 9.9e+37; /* Process Variable alarm limits */
    static float PV_min = -9.9e+37;
    static float Out_max = 9.9e+37; /* Output clip limits */
    static float Out_min = -9.9e+37;
    static float D_max = 9.9e+37; /* Derivative clip limits */
    static float D_min = 9.9e+37;
    static float I_max = 9.9e+37; /* Integral clip limits */
    static float I_min = -9.9e+37;
    static float Man_state = 0; /* Activates manual control */
    static float Man_out = 0; /* Target Manual output value */
    static float Man_inc = 0; /* Manual outout change increment */
    static float SD_factor = 0; /* Setpoint Derivative constant */
    static float SD_max = 9.9e+37; /* Setpoint Derivative clip limits */
    static float SD_min = 9.9e+37;
    static float History_mode = 0; /* Activates fifo data logging */
/* */
/*  Other Variables */
    static float I_out; /* Integral term */
    static float P_out; /* Proportional term */
    static float D_out; /* Derivative term */
    static float Error; /* Error term */
    static float PV_old; /* Last process variable */
    static float Setpoint_old; /* Last setpoint - for derivative */
    static float SD_out; /* Setpoint derivative term */
    static float Status = 0; /* Algorithm status word */

/* */
/*  B0 - PID_out at clip limit */
/*  B1 - I_out at clip limit */
/*  B2 - D_out at clip limit */
/*  B3 - SD_out at clip limit */
/*  B4 - in Manual control mode */
/*  B5 - Error out of limits */
/*  B6 - PV out of limits */
/*  others - unused */
440 Example PID Algorithm Listings  Appendix F



/* */
/* */
/*PID algorithm code: */
/* Test for Process Variable out of limits */
    if ( (inchan  >>  PV_max) || ( PV_min  >>  inchan ) )  /* PV alarm test */
    {

if ( !Status.B6 )
{
  Status.B6 = 1;
  alarmchan = 1;
  interrupt();
}

    }
    else
    {

Status.B6 = 0;
    }
/* Do this when in the Manual control mode */
  if ( Man_state )
  {
/* On the first trigger after INIT only */
    if (First_loop)
    {
        Man_out= outchan;/* Maintain output at manual smooth start */
    }
/* On subsequent triggers, slew output towards Man_out */
    else if (Man_out  >>  outchan + abs(Man_inc))
    {

outchan = outchan + abs(Man_inc);
    }
    else if (outchan  >>  Man_out + abs(Man_inc))
    {

outchan = outchan - abs(Man_inc);
    }
    else
    {

outchan = Man_out;
    }
/* Set manual mode bit in status word */
    Status.B4 = 1;
/* No error alarms while in Manual mode */
    Status.B5 = 0;
/* In case we exit manual mode on the next trigger */
/* Set up for bumpless transfer */
    I_out = outchan;
    Setpoint = inchan;
    PV_old = inchan;
    Setpoint_old = inchan;
  }
/* Do PID calculations when not in Manual mode */
  else  /* if ( Man_state )  */
  {
    Status.B4 = 0;
/* First, find the Process Variable "error" */
/* This calculation has gain of minus one (-1) */
    Error = Setpoint - inchan;
/* Test for error out of limits */
    if ( (Error  >>  Error_max) || (Error_min  >>  Error) )
Example PID Algorithm Listings  441Appendix F



    {
    if ( !Status.B5 )
    {
      Status.B5 = 1;
      alarmchan = 1;
      interrupt();
    }
    }
    else
    {

Status.B5 = 0;
    }
/* On the first trigger after INIT, initialize the I and D terms */
    if (First_loop)
    {
/* For no abrupt output change at startup make the I term cancel the P term */

I_out = outchan + Error * ( I_factor - P_factor );
/* Zero the derivative terms */
    PV_old = inchan;

Setpoint_old = Setpoint;
    }
/* On subsequent triggers, continue integrating */
    else /* not First trigger */
    {

I_out = Error * I_factor + I_out;
    }
/* Clip the Integral term to specified limits */
    if ( I_out   >>  I_max )
    {

I_out = I_max;
Status.B1=1;

    }
    else if ( I_min  >>  I_out )
    {

I_out = I_min;
Status.B1=1;

    }
    else
    {

Status.B1 = 0;
    }
/* Calculate the Setpoint Derivative term */
    SD_out = SD_factor * ( Setpoint - Setpoint_old );
/* Clip to specified limits */
    if ( SD_out  >>  SD_max )/* Clip Setpoint derivative */
    {
    SD_out = SD_max;
    Status.B3=1;
    }
    else if ( SD_min  >>  SD_out )
    {
    SD_out = SD_min;
    Status.B3=1;
    }
    else
    {

Status.B3 = 0;
    }
442 Example PID Algorithm Listings  Appendix F



/* Calculate the Error Derivative term */
    D_out = D_factor *( PV_old - inchan );
/* Clip to specified limits */
    if ( D_out   >>  D_max )/* Clip derivative */
    {

D_out = D_max;
Status.B2=1;

    }
    else if ( D_min  >>  D_out )
    {

D_out = D_min;
Status.B2=1;

    }
    else
    {

Status.B2 = 0;
    }
/* Calculate Proportional term */
    P_out = Error * P_factor;
/* Sum PID&SD terms */
    outchan = P_out + I_out + D_out + SD_out;
/* Save values for next pass */
    PV_old = inchan;

Setpoint_old = Setpoint;
/* In case we switch to manual on the next pass */
/* prepare to hold output at latest value */
    Man_out = outchan;
  }  /* if ( Man_state ) */
/* Clip output to specified limits */
    if ( outchan   >>  Out_max )
    {

outchan = Out_max;
Status.B0=1;

    }
    else if ( Out_min  >>  outchan )
    {

outchan = Out_min;
Status.B0=1;

    }
    else
    {

Status.B0 = 0;
    }
/* Clear alarm output if no alarms */
    if (!(Status.B6 || Status.B5) ) alarmchan = 0;
/* Log appropriate data */
    if ( History_mode  >>  1 )
    {
/* Output everything to FIFO & CVT */

writefifo( (ALG_NUM*256)+9 );
writeboth( inchan, (ALG_NUM*10)+0 );
writeboth( Error, (ALG_NUM*10)+1);
writeboth( outchan, (ALG_NUM*10)+2);
writeboth( Status, (ALG_NUM*10)+3  );
writeboth( Setpoint, (ALG_NUM*10)+4 );
writeboth( P_out, (ALG_NUM*10)+5 );
writeboth( I_out, (ALG_NUM*10)+6 );
writeboth( D_out, (ALG_NUM*10)+7 );
Example PID Algorithm Listings  443Appendix F



writeboth( SD_out, (ALG_NUM*10)+8 );
    }
    else if ( History_mode )
    {
/* Output summary to FIFO & CVT */

writefifo( (ALG_NUM*256)+4 );
writeboth( inchan, (ALG_NUM*10)+0 );
writeboth( Error, (ALG_NUM*10)+1);
writeboth( outchan, (ALG_NUM*10)+2);
writeboth( Status, (ALG_NUM*10)+3  );

    }
    else
    {
/* Output summary to CVT only */

writecvt( inchan, (ALG_NUM*10)+0 );
writecvt( Error, (ALG_NUM*10)+1);
writecvt( outchan, (ALG_NUM*10)+2);
writecvt( Status, (ALG_NUM*10)+3  );

    }
444 Example PID Algorithm Listings  Appendix F



Index
HP E1422A Remote Channel Multifunction DAC Module

Symbols
(ALG_NUM), determining your algorithms 

identity, 166
(FIFO mode BLOCK), continuously reading the 

FIFO, 130
(FIFO mode OVER), reading the latest FIFO 

values, 131
(First_loop), determining first execution, 164
(FM), fixed width pulses at variable frequency, 116
(FM), variable frequency square-wave output, 117
(Important!), performing channel calibration, 117
(PWM), variable width pulses at fixed frequency, 116
*CAL?, how to use, 117
*RST, default settings, 100

Numerics
4-20 mA, adding sense circuits for, 52

A
A common error to avoid, 168
A complete thermocouple measurement command 

sequence, 111
A very simple first algorithm, 174
Abbreviated Commands, 201
ABORt subsystem, 209
abs(expression), 183
Access, bitfield, 185
Accessing I/O channels, 160
Accessing the E1422’s resources, 159
Accuracy Graph

Reference RTD, 395
Reference Thermistor 5K Ohm Type, 393–

394
RTD, 396–397
Thermistor 10K Ohm Type, 402–403
Thermistor 2250 Ohm Type, 398–399
Thermistor 5K Ohm Type, 400–401
Thermocouple Type E (0-800C), 380–381
Thermocouple Type E (-200-800C), 378–379
Thermocouple Type EExtended, 382–383
Thermocouple Type J, 384–385
Thermocouple Type K, 386
Thermocouple Type R, 387–388
Thermocouple Type S, 389–390
Thermocouple Type T, 391–392

Adding settling delay for specific channels, 154
Adding terminal module components, 52
Additive-expression, 188
Additive-operator, 188
ADDRess

MEMory:VME:ADDRess, 276
ADDRess?

MEMory:VME:ADDRess?, 277
Alarm Limits, 431
ALG

:DEFINE in the programming sequence, 170
ALG:DEFINE’s three data formats, 170
Algorithm

a very simple first, 174
deleting, (*RST), 361
exiting the, 184
modifying a standard PID, 174
process monitoring, 178
running the, 174
starting the PID, 127
writing the, 174

Algorithm execution order, 168
Algorithm Language reference, 181
Algorithm language statement

writecvt(), 165
writefifo(), 165

Algorithm subsystem, 210
Algorithm to algorithm communication, 175
ALGorithm:FUNCtion:DEFine, 221
ALGorithm:OUTPut:DELay, 222
ALGorithm:OUTPut:DELay?, 223
ALGorithm:UPDate:CHANnel, 225
ALGorithm:UPDate:WINDow, 226
ALGorithm:UPDate:WINDow?, 227
ALGorithm:UPDate[:IMMediate], 224
ALGorithm[:EXPLicit]:ARRay, 210
ALGorithm[:EXPLicit]:ARRay?, 211
ALGorithm[:EXPLicit]:DEFine, 212
ALGorithm[:EXPLicit]:SCALar, 216
ALGorithm[:EXPLicit]:SCALar?, 217
ALGorithm[:EXPLicit]:SCAN:RATio, 217
ALGorithm[:EXPLicit]:SCAN:RATio?, 218
ALGorithm[:EXPLicit]:SIZE?, 218
ALGorithm[:EXPLicit]:TIME?, 220
ALGorithm[:EXPLicit][:STATe], 219
Index  445



ALGorithm[:EXPLicit][:STATe]?, 220
Algorithm-definition, 190
Algorithms

defining custom, 170
defining standard PID, 120
disabling, 133
enabling, 133
INITiating/Running, 126
non-control, 178

ALL?
SENSe:DATA:FIFO[:ALL]?, 302

AMPLitude
OUTPut:CURRent:AMPLitude, 280
OUTPut:CURRent:AMPLitude?, 281
SOURce:VOLTage[

AMPLitude], 335
An example using the operation group, 140
APERture

SENSe:FREQuency:APERture, 306
SENSe:FREQuency:APERture?, 307

Arithmetic operators, 182
Arm and trigger sources, 123
ARM subsystem, 228
ARM:SOURce, 229
ARM:SOURce?, 230
ARRay

ALGorithm[:EXPLicit]:ARRay, 210
ALGorithm[:EXPLicit]:ARRay?, 211

Assigning values, 191
Assignment operator, 182
Attaching and removing the RJ-45 module, 51
Attaching the terminal module, 48
Attacthing the RJ-45 connector module, 51
Autoranging, more on, 151

B
Bitfield access, 185
Bit-number, 187
Boolean, Parameter Types, 203
Byte, enabling events to be reported in the status, 140
Byte, reading the status, 141

C
CAL

TARE and thermocouples, 148
TARE, resetting, 149

CALibration subsystem, 231
Calibration, channel, *CAL?, 357
Calibration, control of, 27
CALibration:CONFigure:RESistance, 232

CALibration:CONFigure:Voltage, 233
CALibration:REMote

DATA, 235
DATA?, 235, 255

CALibration:REMote:STORe, 236
CALibration:REMote?, 234
CALibration:SETup, 236
CALibration:SETup?, 237
CALibration:STORe, 237
CALibration:TARE, 238
CALibration:TARE:RESet, 241
CALibration:TARE?, 241
CALibration:VALue:RESistance, 242
CALibration:VALue:VOLTage, 242
CALibration:ZERO?, 243
Calling user defined functions, 166
Capability, maximum tare, 149
CAUTIONS

Loss of process control by algorithm, 209, 219
Changing an algorithm while it’s running, 171
Changing gains, 149
Changing gains or filters, 149
Changing timer interval while scanning, 355
CHANnel

ALGorithm:UPDate:CHANnel, 225
Channel calibration, *CAL?, 357
Channel identifiers, communication using, 175
Channel List, On-Board Channels, 203
Channel List, Parameter Types, 203
Channel Ranges, 203
CHANnels

SENSe:REFerence:CHANnels, 320
Channels

accessing I/O, 160
adding settling delay for specific, 154
defined input, 161
input, 160
output, 103, 113, 160–161
setting up analog input, 103
setting up digital input, 113
special identifiers for, 182

Channels Lists, remote, 203
Characteristics, settling, 152
Checking for problems, 152
CHECksum?

DIAGnostic:CHECKsum?, 247
Clearing event registers, 143
Clearing the enable registers, 142
Clipping limits, 431
Coefficients, 132
Command
446 Index  



Abbreviated, 201
Implied, 202
Linking, 206
Separator, 201

Command Quick Reference, 367
Command Reference, Common

*CAL?, 357
*CLS, 358
*DMC, 358
*EMC, 358
*EMC?, 358
*ESE?, 359
*ESR?, 359
*IDN?, 359
*LMC?, 360
*OPC, 360
*OPC?, 360
*PMC, 361
*RMC, 361
*RST, 361
*SRE, 362
*SRE?, 362
*STB?, 362
*TRG, 363
*TST?, 363
*WAI, 366

Command Reference, SCPI, 208
Command sequences, defined, 29
Comment lines, 193
Comments, 190
Common Command Format, 201
Common mode

noise, 424
rejection specification, 376
voltage limits, 423

Communication
algorithm to algorithm, 175
using channel identifiers, 175
using global variables, 176

Comparison operators, 182
Compensating for system offsets, 148
Compensation, thermocouple reference 

temperature, 109
Components, adding terminal module, 52
Compound-statement, 189
CONDition

SENSe:FUNCtion:CONDition, 307
SOURce:FUNC[:SHAPe]:CONDition, 331
STATus:OPERation:CONDition?, 339

STATus:QUEStionable:CONDition?, 344
Conditional constructs, 183
Conditional execution, 192
Configuring

programmable analog SCP parameters, 103
the enable registers, 140
the HP E1422, 21
the transition filters, 140

CONNect
DIAGnostic:CONNect, 248
SENSe:STRain:CONNect, 322
SENSe:STRain:CONNect?, 323

Connecting the on-board thermistor, 47
Connection

Guard, 423
recommended, 44
signals to channels, 44

Connectors, pin-signal lists, 37
Considerations, special, 149
Constant

decimal, 187
hexadecimal, 187
octal, 187

Constructs, conditional, 183
Continuous Mode, 355
Continuously reading the FIFO (FIFO mode 

BLOCK), 130
Control

implementing feed forward, 176
implementing multivariable, 176
manual, 432
PIDA with digital on-off, 174
program flow, 183

Conversion
EU, 418

Conversions
custom EU, 113
custom reference temperature EU, 146
custom thermocouple EU, 145
linking channels to EU, 105
loading tables for linear, 146
loading tables for non linear, 147

Cooling Requirements, specifications, 375
COUNt?

SENSe:DATA:FIFO:COUNt?, 303
Counter, setting the trigger, 126
Creating and loading custom EU conversion 

tables, 145
Creating EU conversion tables, 146
CTYPe?
Index  447



SYSTem:CTYPe?, 349
Current Value Table

SENSe:DATA:CVTable?, 300
CUSTom

SENSe:FUNCtion:CUSTom, 308
Custom

EU conversion tables, creating, 145
EU conversion tables, loading, 145
EU conversions, 113
EU operation, 145
EU tables, 145

Custom reference temperature EU conversions, 146
Custom thermocouple EU conversions, 145
CVT

elements, reading, 165
elements, writing value to, 165
sending data to, 165
SENSe:DATA:CVTable?, 300

D
DATA

CALibration:REMote
DATA, 235
DATA?, 235, 255

DIAGnostic:REMote:USER:DATA, 254
FORMat:DATA, 261
FORMat:DATA?, 263

Data
structures, 185
types, 184

Decimal constant, 187
Declaration, 189
Declaration initialization, 186
Declarations, 189
Declarator, 189
Declaring variables, 190
Default settings, power-on, 100
DEFine

ALGorithm:FUNCtion:DEFine, 221
ALGorithm[:EXPLicit]:DEFine, 212
ROUTe:SEQuence:DEFine?, 291, 293

Defined input and output channels, 161
Defining

an algorithm for swapping, 171
and accessing global variables, 163
custom algorithms, 170
data storage, 122
standard PID algorithms, 120

DELay

ALGorithm:OUTPu:DELay?, 223
ALGorithm:OUTPut:DELay, 222

Detailed instrument operation cycle, 96
Detecting open transducers, 150
Determining

an algorithm’s size, 172
first execution (First_loop), 164
model number, SCPI programming, 359
your algorithms identity (ALG_NUM), 166

DIAGnostic:CALibration:SETup[:MODE], 245
DIAGnostic:CALibration:SETup[:MODE]?, 246
DIAGnostic:CALibration:TARe:MODE?, 247
DIAGnostic:CALibration:TARe[:OTDetect]

:MODE, 246
DIAGnostic:CHECKsum?, 247
DIAGnostic:CONNect, 248
DIAGnostic:CUSTom:MXB, 249
DIAGnostic:CUSTom:PIECewise, 250
DIAGnostic:CUSTum:REFerence

:TEMPerature, 251
DIAGnostic:IEEE, 251
DIAGnostic:IEEE?, 252
DIAGnostic:INTerrupt:LINe, 252
DIAGnostic:INTerrupt:LINe?, 252
DIAGnostic:OTDectect[:STATe], 252
DIAGnostic:OTDectect[:STATe]?, 253
DIAGnostic:OTDetect[:STATe], 151
DIAGnostic:QUERy:SCPREAD, 254
DIAGnostic:REMote:USER:DATA, 254
DIAGnostic:TEST:REMote:SELFtest?, 255–256
DIAGnostic:VERSion?, 258
Directly, reading status groups, 142
Disabling

flash memory access (optional), 27
the input protect feature (optional), 27

Discrete, Parameter Types, 203
Drivers, instrument, 29
DSP, 418
dynamic strain, offset control, 72

E
ENABle

STATus:OPERation:ENABle, 340
STATus:OPERation:ENABle?, 341
STATus:QUEStionable:ENABle, 345
STATus:QUEStionable:ENABle?, 346

Enabling and disabling algorithms, 133
Enabling events to be reported in the status byte, 140
Environment, the algorithm execution, 158
Equality-expression, 188
Equality-operator, 188
448 Index  



Error Messages, 407
Self Test, 410

ERRor?
SYSTem:ERRor?, 349

EU Conversion, 418
EVENt?

STATus:OPERation:EVENt?, 341
STATus:QUEStionable:EVENt?, 346

Example
indefinite length block data, 171
language usage, 157
operation status group, 141
programs, about, 29
questionable data status group, 141
standard event status group, 141

Example programs (VXIplug&play). See online help.
EXCitation

SENSe:STRain:EXCitation, 323
SENSe:STRain:EXCitation?, 324

EXCitation?, MEASure:VOLTage:EXCitation?, 272
Executing the programming model, 99
Execution, conditional, 192
Exiting the algorithm, 184
Expression, 188
Expression-statement, 189
External Trigger Input, specifications, 376

F
Faceplate connector pin-signal lists, 37
FIFO

reading values from the, 166
sending data to, 165
time relationship of readings in the FIFO, 166
writing values to, 165

Filters
adding circuits to terminal module, 52
configuring the status transition filters, 140

First algorithm execution, determining, 164
Fixed width pulses at variable frequency (FM), 116
Fixing the problem, 153
Flash Memory, 418
Flash memory access, disabling, 27
Flash memory limited lifetime, 236, 238, 254
FM:STATe

SOURce:FM:STATe, 330
SOURce:FM:STATe?, 331

Format
Common Command, 201
SCPI Command, 201
specifying the data format, 122

FORMat:DATA, 261
FORMat:DATA?, 263
Formats

ALG:DEFINE’s three data formats, 170
FREQuency

INPut:FILTer[:LPASs]:FREQuency, 265
INPut:FILTer[:LPASs]:FREQuency?, 266
SENSe:FUNCtion:FREQuency, 311

Frequency
function, 114
setting algorithm execution frequency, 134
setting filter cutoff, 103

Function
calling a user defined, 166
frequency, 114
setting input, 114
static state (CONDition), 114, 116
the main, 158
totalizer, 114

Function reference (VXIplug&play). See online help.
Functions, 183

linking output channels to, 113
setting output, 115

Functions and statements, intrinsic
abs(expression), 183
interrupt(), 166, 183
max(expression1,expression2), 183
min(expression1,expression2), 183
writeboth(expression,cvt_element), 183
writecvt(expression,cvt_element), 165, 183
writefifo(expression), 165, 183

G
GAIN

INPut:GAIN, 268
INPut:GAIN?, 268

Gain, channel, 357
Gains, setting SCP, 103
GFACtor

SENSe:STRain:GFACtor, 325
SENSe:STRain:GFACtor?, 326

Global variables, 186
accessing, 163
defining, 163

Glossary, 417
Graph

Reference RTD Accuracy Graph, 395
Reference Thermistor Accuracy Graph 5K 

Ohm Type, 393–394
Index  449



RTD Accuracy, 396–397
Thermistor Accuracy Graph 10K Ohm 

Type, 402–403
Thermistor Accuracy Graph 2250 Ohm 

Type, 398–399
Thermistor Accuracy Graph 5K Ohm 

Type, 400–401
Thermocouple Accuracy Graph Type E (0-

800C), 381
Thermocouple Accuracy Graph Type 

EExtended, 382–383
Thermocouple Accuracy Graph Type J, 384–

385
Thermocouple Accuracy Graph Type K, 386
Thermocouple Accuracy Graph Type R, 387–

388
Thermocouple Accuracy Graph Type S, 389–

390
Thermocouple Accuracy Graph Type T, 391–

392
Thermocouple Accuracy, Type E (-200-

800C), 379
Grounding, noise due to inadequate, 423
Group, an example using the operation, 140
Guard connections, 423

H
HALF?

SENSe:DATA:FIFO:COUNt:HALF?, 303
SENSe:DATA:FIFO:HALF?, 303

Hexadecimal constant, 187
HINTS

for quiet measurements, 44
Read chapter 3 before chapter 4, 155

History mode, 432
How to use *CAL?, 117
HP E1422 background operation, 143
HP E1422, configuring the, 21

I
Identifier, 186
Identifiers, 181
IEEE +/- INF, 262
IMMediate

ALGorithm:UPDate[:IMMediate], 224
ARM[:IMMediate], 229
INITiate[:IMMediate], 264
TRIGger[:IMMediate], 354

Implementing

feed forward control, 176
multivariable control, 176
setpoint profiles, 178

Implied Commands, 202
IMPORTANT!

Do use CAL:TARE for copper TC 
wiring, 148

Don’t use CAL:TARE for thermocouple 
wiring, 148

Making low-noise measurements, 36
Resolving programming problems, 99

Indefinite length block data example, 171
INF, IEEE, 262
Init-declarator, 189
Init-declarator-list, 189
Initialization, declaration, 186
Initializing variables, 164
INITiate subsystem, 264
INITiate[:IMMediate], 264
INITiating/Running algorithms, 126
Input channels, 160
Input impedance specification, 376
Input protect feature, disabling, 27
INPut subsystem, 265
INPut:FILTer[:LPASs]:FREQuency, 265
INPut:FILTer[:LPASs]:FREQuency?, 266
INPut:FILTer[:LPASs][:STATe], 266
INPut:FILTer[:LPASs][:STATe]?, 267
INPut:GAIN, 268
INPut:GAIN?, 268
INPut:LOW, 269
INPut:LOW?, 270
INPut:POLarity, 270
INPut:POLarity?, 271
Inputs, setting up digital, 113
Installing signal conditioning plug-ons, 23
Instructions. releasing RJ-45 Module levers, 51
Instrument drivers, 29
Interrupt function, 166
Interrupt level, setting NOTE, 21
interrupt(), 166, 183
Interrupts

updating the status system, 143
VXI , 143

Intrinsic functions and statements
abs(expression), 183
interrupt(), 166, 183
max(expression1,expression2), 183
min(expression1,expression2), 183
writeboth(expression,cvt_element), 183
450 Index  



writecvt(expression,cvt_element), 165, 183
writefifo(expression), 165, 183

Intrinsic-statement, 189
Isothermal reference measurement, NOTE, 36

K
Keywords

special HP E1422 reserved, 181
standard reserved, 181

L
Language syntax summary, 186
Language, overview of the algorithm, 156
Layout

Terminal Module, 38
Lifetime limitation, Flash memory, 236, 238, 254
Limits

alarm, 431
clipping, 431
Common mode voltage, 423

LINe
DIAGnostic:INTerrupt:LINe, 252
DIAGnostic:INTerrupt:LINe?, 252

Lines, comment, 193
Linking

channels to EU conversion, 105
commands, 206
output channels to functions, 113
resistance measurements, 106
strain measurements, 111
temperature measurements, 108
voltage measurements, 106

Lists
Faceplate connector pin-signal, 37

Loading
custom EU tables, 146
tables for linear conversions, 146
tables for non linear conversions, 147

Logical operators, 183
Logical-AND-expression, 188
LOW

INPut:LOW, 269
INPut:LOW?, 270

Low-noise measurements
HINTS, 44
IMPORTANT!, 36

M
Manual control, 432
max(expression1,expression2), 183

Maximum
common mode voltage specification, 376
input voltage, specifications, 376
tare cal. offset specification, 376
tare capability, 149
Update Rate, specifications, 375

MEASure:VOLTage:EXCitation?, 272
MEASure:VOLTage:UNSTrained?, 274
Measurement accuracy DC Volts specification, 376
Measurement Ranges, specifications, 375
Measurements

linking resistance, 106
linking strain, 111
linking temperature, 108
linking voltage, 106
reference measurement before

thermocouple measurements, 110
terminal block considerations for TC, 43
thermocouple, 109

Measuring the reference temperature, 110
MEMory:VME:ADDRess, 276
MEMory:VME:ADDRess?, 277
MEMory:VME:SIZE, 277
MEMory:VME:SIZE?, 278
MEMory:VME:STATe, 278
MEMory:VME:STATe?, 279
Messages, error, 407
min(expression1,expression2), 183
MODE

SENSe:DATA:FIFO:MODE, 304
SENSe:TOTalize:RESe:MODE, 329

Mode
history, 432
selecting the FIFO, 123
which FIFO mode?, 130

MODE?
SENSe:DATA:FIFO:MODE?, 305
SENSe:TOTalize:RESe:MODE?, 329

Model
executing the programming, 99
the programming, 98

Model number, determining with SCPI 
programming, 359

Modifier, the static, 184
Modifying

a standard PID algorithm, 174
running algorithm variables, 132
the standard PIDA algorithm, 175
the terminal module circuit, 52

Module
Index  451



 

Cooling Requirements, specifications, 375
Power Available for SCPs, 

specifications, 375
Power Requirements, specifications, 375
SCPs and Terminal, 38
Terminal, 38

More on auto ranging, 151
Multiplicative-expression, 188
Multiplicative-operator, 188
MXB

DIAGnostic:CUSTom:MXB, 249

N
NaN, 262
Noise

Common mode, 424
due to inadequate grounding, 423
Normal mode, 424
reduction with amplifier SCPs, NOTE, 153
reduction, wiring techniques, 422
rejection, 424

Noisy measurements
Quieting, 36, 44

Non-Control algorithms, 178
Normal mode noise, 424
Not-a-Number, 262
NOTES

*CAL? and CAL:TARE turn off then on 
OTD, 253

*RST effect on custom EU tables, 145
*TST? sets default ASC,7 data format, 262
+ & - overvoltage return format from 

FIFO, 302, 304, 306
ALG:SCAN:RATIO vs. ALG:UPD, 217
ALG:SIZE? return for undefined 

algorithm, 219
ALG:STATE effective after 

ALG:UPDATE, 133
ALG:STATE effective only after 

ALG:UPD, 219
ALG:TIME? return for undefined 

algorithm, 221
Algorithm Language case sensitivity, 182
Algorithm Language reserved keywords, 181
Algorithm source string terminated with 

null, 171
Algorithm source string terminates with 

null, 214
Algorithm Swapping restrictions, 173

Algorithm variable declaration and 
assignment, 164

Amplifier SCPs can reduce measurement 
noise, 153

BASIC’s vs. ’C’s is equal to symbol, 191
Bitfield access C’ vs. 

AlgorithmLanguage, 186
Cannot declare channel ID as variable, 182
Combining SCPI commands, 206
CVT contents after *RST, 301
Decimal constants can be floating or 

integer, 187
Default (*RST) Engineering Conversion, 106
Define user function before algorithm 

calls, 167
Do not CAL:TARE thermocouple 

wiring, 239
Do use CAL:TARE for copper in TC 

wiring, 148
Do use CAL:TARE for copper TC 

wiring, 239
Don’t use CAL:TARE for thermocouple 

wiring, 148
Flash memory limited lifetime, 149, 236, 238, 

254
Isothermal reference measurements, 36
MEM subsystem vs. command module 

model, 276
MEM subsystem vs. TRIG and INIT 

sequence, 276
MEM system vs TRIG and INIT 

sequence, 260
Memory required by an algorithm, 171
Number of updates vs. 

ALG:UPD:WINDOW, 210, 216, 226
Open transducer detect restrictions, 151
OUTP:CURR:AMPL command, 105
OUTP:VOLT:AMPL command, 105
OUTPut:CURRent:AMPLitude for resistance

measurements, 280
Reference to noise reduction literature, 423
Resistance temperature measurements, 108
Saving time when doing channel 

calibration, 118
Selecting manual range vs. SCP gains, 106
Setting the interrupt level, 21
Settings conflict, ARM:SOUR vs 

TRIG:SOUR, 228, 354
452 Index  



Thermocouple reference temperature 
usage, 318, 320

TRIGger:SOURce vs. ARM:SOURce, 124–

125
Warmup before executing *TST?, 410
When algorithm variables are initialized, 186

NTRansition
STATus:OPERation:NTRansition, 341
STATus:OPERation:NTRansition?, 342
STATus:QUEStionable:NTRansition, 346
STATus:QUEStionable:NTRansition?, 347

Numeric, parameter types, 202

O
Octal constant, 187
Offset

A/D, 236, 357
channel, 236, 357

offset control for dynamic strain port, 72
Offsets

compensating for system offsets, 148
residual sensor, 148
system wiring, 148

On-Board Channels, Channels Lists, 203
On-board Current Source specification, 376
Operating sequence, 167
Operation, 117, 148

Instrument operation cycle, 96
operational overview, 94

Operation and restrictions, 117
Operation status group examples, 141
Operation, custom EU, 145
Operation, HP E1422background, 143
Operation, standard EU, 145
Operational Overview, 94
Operators

arithmetic, 182
assignment, 182
comparison, 182
logical, 183
the arithmetic, 191
the comparison, 191
the logical, 191
unary, 182
unary arithmetic, 191
unary logical, 183

Order, algorithm execution, 168
OTD restrictions, NOTE, 151
OTDetect, DIAGnostic

OTDetect, 151
Output channels, 160
OUTPut subsystem, 280
OUTPut:CURRent:AMPLitude, 280
OUTPut:CURRent:AMPLitude?, 281
OUTPut:CURRent:STATe, 282
OUTPut:CURRent:STATe?, 282
OUTPut:POLarity, 283
OUTPut:POLarity?, 283
OUTPut:SHUNt, 284
OUTPut:SHUNt:SOURce, 285
OUTPut:SHUNt:SOURce?, 286
OUTPut:SHUNt?, 284
OUTPut:TTLTrg:SOURce, 286
OUTPut:TTLTrg:SOURce?, 287
OUTPut:TTLTrg[:STATe], 287
OUTPut:TTLTrg[:STATe]?, 288
OUTPut:TYPE, 288
OUTPut:TYPE?, 289
OUTPut:VOLTage:AMPLitude, 289
OUTPut:VOLTage:AMPLitude?, 290
Outputs, setting up digital, 114
Outputting trigger signals, 126
Overall program structure, 194
Overall sequence, 167
Overloads, unexpected channel, 150
Overview

of the algorithm language, 156
of the HP E1422A, 92

P
Parameter data and returned value types, 206
Parameter Types, 202

Channel List, 203
Discrete, 203
Numeric, 202

Parameters, configuring programmable analog 
SCP, 103

PART?
SENSe:DATA:FIFO:PART?, 305

Performing channel calibration (Important!), 117
PERiod

SOURce:PULSe:PERiod, 333
SOURce:PULSe:PERiod?, 334

PIDA with digital on-off control, 174
PIDA, modifying the standard, 175
Pin-out, connector pin-signal lists, 37
Planning

grouping channels to signal conditioning, 33
planning wiring layout, 33
sense vs. output SCPs, 35
Index  453



thermocouple wiring, 36
Plug&Play. See online help.
Plug-ons, installing signal conditioning, 23
Points

ROUTe:SEQuence:POINts?, 294
POISson

SENSe:STRain:POISson, 326
SENSe:STRain:POISson?, 327

POLarity
INPut:POLarity, 270
INPut:POLarity?, 271
OUTPut:POLarity, 283
OUTPut:POLarity?, 283

Polarity
setting input, 113
setting output, 115

Power
available for SCPs, specifications, 375
requirements, specifications, 375

Power-on and *RST default settings, 100
Prameter Types

Boolean, 203
PRESet

STATus:PRESet, 344
Primary-expression, 187
Problem, fixing the, 153
Problems, checking for, 152
Problems, resolving programming, 99
Process monitoring algorithm, 178
Profiles, implementing setpoint, 178
Program flow control, 183
Program structure and syntax, 190
Programming model, 98
Programming the trigger timer, 125
PTRansition

STATus:OPERation:PTRansition, 342
STATus:OPERation:PTRansition?, 343
STATus:QUEStionable:PTRansition, 347
STATus:QUEStionable:PTRansition?, 348

PULSe
SOURce:FUNC[:SHAPe]:PULSe, 332

Q
Questionable data group examples, 141
Quick Reference, Command, 367
Quiet measurements, HINTS, 44
Quieter readings with amplifier SCPs, NOTE, 153

R
Range of channels, 203

RATio
ALGorithm[:EXPLicit]:SCAN:RATio, 217
ALGorithm[:EXPLicit]:SCAN:RATio?, 218

Reading
condition registers, 143
CVT elements, 165
event registers, 142
running algorithm values, 128
status groups directly, 142
the Latest FIFO Values (FIFO mode 

OVER), 131
the status byte, 141
values from the FIFO, 166

Recommended measurement connections, 44
Re-Execute *CAL? ,when to, 118
REFerence

SENSe:FUNCtion:CUSTom:REFerence, 309
SENSe:REFerence, 318

Reference
junction, 47
measurement before thermocouple 

measurements, 110
temperature measurement, NOTE, 36
temperature sensing, 42

Reference RTD Accuracy Graph, 395
Reference Thermistor Accuracy Graph

5K Ohm Type, 393–394
Reference, Algorithm language, 181
Register, the status byte group’s enable, 142
Registers

clearing event registers, 143
clearing the enable registers, 142
configuring the enable registers, 140
reading condition registers, 143
reading event registers, 142

Rejection
Noise, 424

Relational-expression, 188
Relational-operator, 188
Relative Form, Channel List, 204
Release Instructions, 51
REMote

CALibration:REMote?, 234
Remote Channels, Channel Lists, 203
Remote runtime scan verification, 73, 94, 127, 161
Removing the HP E1422 terminal modules, 50
Removing the RJ-45 connector module, 51
RESet

SENSe:DATA:CVTable:RESet, 301
SENSe:DATA:FIFO:RESet, 306
454 Index  



Reset
*RST, 361

Resetting
CAL:TARE, 149

Residual sensor offsets, 148
RESistance

CALibration:CONFigure:RESistance, 232
CALibration:VALue:RESistance, 242
SENSe:FUNCtion:RESistance, 312

Resources, accessing the E1422’s, 159
Restrictions, 117
RJ-45 connector module, attaching and removing, 51
ROUTe subsystem, 291
ROUTe:SEQuence:DEFine?, 291, 293
ROUTe:SEQuence:POINts?, 294
RTD Accuracy Graph, 396–397
RTD and thermistor measurements, 108
Running the algorithm, 174
Running, changing an algorithm

while it’s running, 171
Runtime remote scan verification, 73, 94, 127, 161

S
SAMPle subsystem, 296
SAMPle:TIMer, 296
SAMPle:TIMer?, 296
SCALar

ALGorithm[:EXPLicit]:SCALar, 216
ALGorithm[:EXPLicit]:SCALar?, 217

Scan, runtime remote scan verification, 73, 94, 127, 

161
SCP, 418

grouping channels to signal conditioning, 33
sense vs. output SCPs, 35
setting the HP E1505 current source, 104

SCPI Command Format, 201
SCPs and Terminal Module, 38
Selecting

the FIFO mode, 123
the trigger source, 124
trigger timer arm source, 125

Selection-statement, 189
Self test

error messages, 410
SELFtest

DIAGnostic:TEST:REMote:SELFtest?, 255–

256
Self-test

how to read results, 363
Sending Data to the CVT and FIFO, 165

SENSe subsystem, 298
SENSe:CHANnel:SETTling, 299
SENSe:CHANnel:SETTling?, 300
SENSe:DATA:CVTable:RESet, 301
SENSe:DATA:CVTable?, 300
SENSe:DATA:FIFO:COUNt:HALF?, 303
SENSe:DATA:FIFO:COUNt?, 303
SENSe:DATA:FIFO:HALF?, 303
SENSe:DATA:FIFO:MODE, 304
SENSe:DATA:FIFO:MODE?, 305
SENSe:DATA:FIFO:PART??, 305
SENSe:DATA:FIFO:RESet, 306
SENSe:DATA:FIFO[:ALL]?, 302
SENSe:FREQuency:APERture, 306
SENSe:FREQuency:APERture?, 307
SENSe:FUNCtion:CONDition, 307
SENSe:FUNCtion:CUSTom, 308
SENSe:FUNCtion:CUSTom:REFerence, 309
SENSe:FUNCtion:CUSTom:TCouple, 310
SENSe:FUNCtion:FREQuency, 311
SENSe:FUNCtion:RESistance, 312
SENSe:FUNCtion:STRain, 313
SENSe:FUNCtion:TEMPerature, 315
SENSe:FUNCtion:TOTalize, 317
SENSe:FUNCtion:VOLTage, 317
SENSe:REFerence, 318
SENSe:REFerence:CHANnels, 320
SENSe:REFerence:TEMPerature, 320
SENSe:STRain:BRIDge:TYPE, 321
SENSe:STRain:BRIDge:TYPE?, 322
SENSe:STRain:CONNect, 322
SENSe:STRain:CONNect?, 323
SENSe:STRain:EXCitation, 323
SENSe:STRain:EXCitation:STATe, 324
SENSe:STRain:EXCitation:STATe?, 325
SENSe:STRain:EXCitation?, 324
SENSe:STRain:GFACtor, 325
SENSe:STRain:GFACtor?, 326
SENSe:STRain:POISson, 326
SENSe:STRain:POISson?, 327
SENSe:STRain:UNSTrained, 327
SENSe:STRain:UNSTrained?, 328
SENSe:TOTalize:RESe:MODE, 329
SENSe:TOTalize:RESe:MODE?, 329
Sensing

4-20 mA, 52
Reference temperature with the HPE1422, 42

Separator, command, 201
Sequence

A complete thermocouple measurement 
command sequence, 111
Index  455



ALG:DEFINE in the programming 
sequence, 170

operating, 167
overall, 167
the operating sequence, 127

Setting
algorithm execution frequency, 134
filter cutoff frequency, 103
input function, 114
input polarity, 113
output drive type, 115
output functions, 115
output polarity, 115
SCP gains, 103
the HP E1505 current source SCP, 104
the HP E1511 strain bridge SCP excitation 

voltage, 105
the logical address switch, 22
the trigger counter, 126

Setting up
analog input and output channels, 103
digital input and output channels, 113
digital inputs, 113
digital outputs, 114
the trigger system, 123

Settings conflict
ARM:SOUR vs TRIG:SOUR, 228, 354

SETTling
SENSe:CHANnel:SETTling, 299
SENSe:CHANnel:SETTling?, 300

Settling characteristics, 152
SETup

CALibration:SETup, 236
CALibration:SETup?, 237
DIAGnostic:CALibration:SETup

[:MODE], 245
[:MODE]?, 246

Shield Connections
When to make, 423

Shielded wiring, IMPORTANT!, 36
SHUNt

OUTPut:SHUNt, 284
OUTPut:SHUNt:SOURce?, 286
OUTPut:SHUNt?, 284

Signal, connection to channels, 44
Signals, outputting trigger, 126
SIZE

ALGorithm[:EXPLicit]:SIZE?, 218
MEMory:VME:SIZE, 277

MEMory:VME:SIZE?, 278
Size, determining an algorithms’, 172
Soft front panel (VXIplug&play). See online help.
SOUR

VOLT, offset control, 72
SOURce

ARM:SOURce, 229
ARM:SOURce?, 230
OUTPut:SHUNt:SOURce, 285
OUTPut:TTLTrg:SOURce, 286
TRIGger:SOURce, 354
TRIGger:SOURce?, 355

SOURce subsystem, 330
Source, selecting the trigger, 124
Source, selecting trigger timer arm, 125
SOURce:FM:STATe, 330
SOURce:FM:STATe?, 331
SOURce:FUNC[:SHAPe]:CONDition, 331
SOURce:FUNC[:SHAPe]:PULSe, 332
SOURce:FUNC[:SHAPe]:SQUare, 332
SOURce:PULM[:STATe], 332
SOURce:PULM[:STATe]?, 333
SOURce:PULSe:PERiod, 333
SOURce:PULSe:PERiod?, 334
SOURce:PULSe:WIDTh, 334
SOURce:PULSe:WIDTh?, 335
SOURce:VOLTage[

AMPLitude], 335
Sources, arm and trigger, 123
Special

considerations, 149
HP E1422 reserved keywords, 181
identifiers for channels, 182

Specifications, 375
Common mode rejection, 376
External Trigger Input, 376
Input impedance, 376
Maximum common mode voltage, 376
Maximum input voltage, 376
Maximum tare cal. offset, 376
Maximum Update Rate, 375
Measurement accuracy DC Volts, 376
Measurement Ranges, 375
Measurement Resolution, 375
Module Cooling Requirements, 375
Module Power Available for SCPs, 375
Module Power Requirements, 375
On-board Current Source, 376
Temperature Accuracy, 377
Trigger Timer and Sample Timer 
456 Index  



Accuracy, 375
Specifying the data format, 122
SQUare

SOURce:FUNC[:SHAPe]:SQUare, 332
Standard

EU operation, 145
event status group examples, 141
reserved keywords, 181

Standard Commands for Programmable Instruments, 
SCPI, 208

Standard Form, Channel List, 203
Starting the PID algorithm, 127
STATe

ALGorithm[:EXPLicit][:STATe], 219
ALGorithm[:EXPLicit][:STATe]?, 220
DIAGnostic:OTDectect[:STATe], 252
DIAGnostic:OTDectect[:STATe]?, 253
INPut:FILTer[:LPASs][:STATe], 266
INPut:FILTer[:LPASs][:STATe]?, 267
MEMory:VME:STATe, 278
MEMory:VME:STATe?, 279
OUTPut:CURRent:STATe, 282
OUTPut:CURRent:STATe?, 282
SENSe:STRain:EXCitation:STATe, 324
SENSe:STRain:EXCitation:STATe?, 325
SOURCe:FM:STATe, 330
SOURce:FM:STATe?, 331
SOURce:PULM[:STATe], 332
SOURce:PULM[:STATe]?, 333

Statement, 190
Statement, algorithm language

writecvt(), 165
writefifo(), 165

Statement-list, 190
Statements, 183
Statements and functions, intrinsic

abs(expression), 183
interrupt(), 166, 183
max(expression1,expression2), 183
min(expression1,expression2), 183
writeboth(expression,cvt_element), 183
writecvt(expression,cvt_element), 165, 183
writefifo(expression), 165, 183

Static state (CONDition) function, 114, 116
STATus subsystem, 337
Status variable, 432
STATus:OPERation:CONDition?, 339
STATus:OPERation:ENABle, 340
STATus:OPERation:ENABle?, 341

STATus:OPERation:EVENt?, 341
STATus:OPERation:NTRansition, 341
STATus:OPERation:NTRansition?, 342
STATus:OPERation:PTRansition, 342
STATus:OPERation:PTRansition?, 343
STATus:PRESet, 344
STATus:QUEStionable:CONDition?, 344
STATus:QUEStionable:ENABle, 345
STATus:QUEStionable:ENABle?, 346
STATus:QUEStionable:EVENt?, 346
STATus:QUEStionable:NTRansition, 346
STATus:QUEStionable:NTRansition?, 347
STATus:QUEStionable:PTRansition, 347
STATus:QUEStionable:PTRansition?, 348
Storage, defining data, 122
STORe

CALibration:REMote:STORe, 236
CALibration:STORe, 237

STRain
SENSe:FUNCtion:STRain, 313

Structure, overall program, 194
Structures, data, 185
Subsystem

ABORT, 209
Algorithm, 210
ARM, 228
CALibration, 231
DIAGnostic, 245
FETCh?, 259
FORMat, 261
INITiate, 264
INPut, 265
MEMory, 276
OUTPut, 280
ROUTe, 291
SAMPle, 296
SENSe, 298
SOURce, 330
STATus, 337
SYSTem, 349
TRIGger, 351

Summary, language syntax, 186
Supplying the reference temperature, 111
Swapping, defining an algorithm for, 171
Switch, setting the logical address, 22
Symbols, the operations, 191
Syntax, Variable Command, 202
System

setting up the trigger system, 123
using the status system, 137
Index  457



wiring offsets, 148
SYSTem subsystem, 349
SYSTem:CTYPe?, 349
SYSTem:ERRor?, 349
SYSTem:VERSion?, 350

T
Tables

creating EU conversion, 146
custom EU, 145
loading custom EU, 146

TARE
CALibration:TARE, 238
CALibration:TARE:RESet, 241
CALibration:TARE?, 241
DIAGnostic:CALibration:TARe[:OTDetect]

:MODE, 246
TCouple

SENSe:FUNCtion:CUSTom:TCouple, 310
Techniques

Wiring and noise reduction, 422
TEMPerature

DIAGnostic:CUSTum:REFerence
:TEMPerature, 251

SENSe:FUNCtion:TEMPerature, 315
SENSe:REFerence:TEMPerature, 320

Temperature
accuracy specifications, 377
measuring the reference temperature, 110
supplying the reference temperature, 111

Terminal block considerations for TC 
measurements, 43

Terminal Blocks, 419
Terminal Module, 419

Attaching and removing the HP E1422, 50
Attaching the HP E1422, 50
Layout, 38
Removing the HP E1422, 50
Wiring and attaching the, 48
wiring maps, 53

The algorithm execution environment, 158
The arithmetic operators, 191
The comparison operators, 191
The logical operators, 191
The main function, 158
The operating sequence, 127
The operations symbols, 191
The static modifier, 184
The status byte group’s enable register, 142
Thermistor

and RTD measurements, 108
Connecting the on-board, 47

Thermistor Accuracy Graph
10K Ohm Type, 402–403
2250 Ohm Type, 398–399
5K Ohm Type, 400–401

Thermocouple Accuracy Graph
Type E (0-800C), 380–381
Type E (-200-800C), 378–379
Type EExtended, 382–383
Type J, 384–385
Type K, 386
Type R, 387–388
Type S, 389–390
Type T, 391–392

Thermocouple measurements, 109
Thermocouple reference temperature 

compensation, 109
Thermocouples and CAL:TARE, 148
TIME

ALGorithm[:EXPLicit]:TIME, 220
Time relationship of readings in FIFO, 166
Timer

SAMPle:TIMer, 296
SAMPle:TIMer?, 296

Timer, programming the trigger, 125
TIMer?

TRIGger:TIMer?, 356
TIMerTRIGger:TIMer, 355
Timing of loops, 127
TOTalize

SENSe:FUNCtion:TOTalize, 317
Totalizer function, 114
Transducers, detecting open, 150
TRIGger subsystem, 351
trigger system

ABORt subsystem, 209
ARM subsystem, 228
INITiate subsystem, 264
TRIGger subsystem, 351

Trigger Timer and Sample Timer Accuracy, 
specifications, 375

Trigger, variable width pulse per, 116
TRIGger:COUNt, 353
TRIGger:COUNt?, 353
TRIGger:SOURce, 354
TRIGger:SOURce?, 355
TRIGger:TIMer, 355
TRIGger:TIMer?, 356
TRIGger[:IMMediate], 354
458 Index  



TTLTrg
OUTPut:TTLTrg[:STATe], 287
OUTPut:TTLTrg[:STATe]?, 288
SOURce

OUTPut:TTLTrg:SOURce?, 287
TYPE

SENSe:STRain:BRIDge:TYPE, 321
SENSe:STRain:BRIDge:TYPE?, 322

TYPe
OUTPut:TYPE, 288
OUTPut:TYPE?, 289

Type, setting output drive, 115
Types

parameter types, 202
Types, data, 184

U
Unary

arithmetic operator, 191
logical operator, 183
operators, 182

Unary-expression, 187
Unary-operator, 187
Unexpected channel offsets or overloads, 150
UNSTrained

SENSe:STRain:UNSTrained, 327
SENSe:STRain:UNSTrained?, 328

UNSTrained?, 
MEASure:VOLTage:UNSTrained?, 274

Updating
the algorithm variables, 132
the algorithm variables and coefficients, 132
the status system and VXI interrupts, 143

Usage, example language, 157
Using the status system, 137

V
Value types

parameter data, 206
returned, 206

Values, assigning, 191
Values, reading running algorithm, 128
Variable

Command Syntax, 202
frequency square-wave output (FM), 117
the status variable, 432
width pulse per trigger, 116
width pulses at fixed frequency (PWM), 116

Variables
communication using global, 176

declaring, 190
global, 186
initializing, 164
modifying running algorithm, 132

Verification, runtime remote scan verification, 73, 94, 

127, 161
Verifying a successful configuration, 30
VERSion

DIAGnostic:VERSion?, 258
SYSTem:VERSion?, 350

Voids Warranty
Cutting Input Protect Jumper, 27

VOLTage
AMPLitude

OUTPut:VOLTage:AMPLitude, 289
OUTPut:VOLTage:AMPLitude?, 290

CALibration:CONFigure:VOLTage, 233
SENSe:FUNCtion:VOLTage, 317
SOURce:VOLTage, 335

Voltage
CALibration:VALue:VOLTage, 242

voltage, offset control dynamic strain, 72
Voltage, setting the HP E1511 strain bridge SCP 

excitation, 105
VXIplug&play. See online help.

W
Warranty

Voided by cutting Input Protect Jumper, 27
What *CAL? does, 118
When to make shield connections, 423
When to re-execute *CAL?, 118
Which FIFO mode?, 130
WIDTh

SOURce:PULSe:WIDTh, 334
SOURce:PULSe:WIDTh?, 335

WINDow
ALGorithm:UPDate:WINDow, 226
ALGorithm:UPDate:WINDow?, 227

Wiring
and attaching the terminal module, 48
maps, erminal Module, 53
planning for thermocouple, 36
planning layout, 33
signal connection, 44
the terminal module, 48

Wiring techniques, for noise reduction, 422
writeboth(expression,cvt_element), 183
writecvt(expression,cvt_element), 165, 183
writefifo(expression), 165, 183
Index  459



Writing
the algorithm, 174
values to CVT elements, 165
values to the FIFO, 165

Z
ZERO?

CALibration:ZERO?, 243
460 Index  


	Safety Symbols
	HEWLETT-PACKARD WARRANTY STATEMENT
	WARNINGS
	Declaration of Conformity
	Reader Comment Sheet
	Contents
	Chapter 1 Getting Started
	About this Chapter
	Configuring the HP�E1422
	Setting the Logical Address Switch
	Installing Signal Conditioning Plug-ons
	Disabling the Input Protect Feature (optional)
	Disabling Flash Memory Access (optional)

	Installing the Module
	Instrument Drivers
	About Example Programs
	Examples on CD
	Example Command Sequences
	Typical Example program

	Verifying a Successful Configuration

	Chapter 2 Field Wiring
	About This Chapter
	Planning Your Wiring Layout
	SCP Positions and Channel Numbers
	Sense SCPs and Output SCPs
	Planning for Thermocouple Measurements

	Faceplate Connector Pin-Signal Lists
	Optional Terminal and Connector Modules
	The SCPs and Terminal Module
	Terminal Module Layout
	The RJ-45 Connector Module
	Spring Terminal Module Layout
	Screw Terminal Module Layout

	Reference Temperature Sensing with the HP�E1422
	Terminal Module Considerations for TC Measurements

	Preferred Measurement Connections
	Connecting the On-board Thermistor
	Wiring and Attaching the Terminal Module
	Removing the HP E1422 Terminal Modules
	Attaching and Removing the HP E1422 RJ-45 Module
	Adding Components to the Terminal Module
	Spring and Screw Terminal Module Wiring Maps

	Chapter 3 Programming the HP�E1422A & HP�E1529A for Remote Strain Measurement
	About This Chapter
	Instrument Setup for Remote Strain Measurements
	Preparing the HP�E1422A for Installation
	Overview
	Preparing the HP�E1529A for Use
	Installing User Selected 1/4 Bridge Resistors (optional)
	Removing the Top Cover
	Locating Resistors
	Installing Resistors

	Connecting HP�E1529As to the HP�E1422A
	Cabling Supplies and Tools

	Two Interconnect Methods
	The Option 001 RJ-45 Connector Module
	Spring, and Screw Terminal Modules
	Example Terminal Module to HP�E1529A Connection

	Connecting Excitation Supplies

	Connecting the HP�E1529A to Strain Gages
	Channel Connector Pin-to-Signal Relationship

	HP�E1529A Bridge Configurations
	The Quarter Bridge configuration
	The Half Bridge configuration
	The Full Bridge configuration

	Connecting to the HP�E1529A’s Dynamic Strain Ports
	Extending the Dynamic Strain Connection
	Dynamic Strain Port Offset Control

	Remote Strain Channel Addressing
	Runtime Remote Scan Verification

	Programming for Remote Strain Measurement
	Power-on and *RST Configuration
	Description of Strain Measurement
	CALibration First
	Measure Strain Using Built-in Strain EU Conversion
	Built-in EU Conversion Command Sequence
	Measure Strain Using User Specified EU Conversion
	Custom EU Conversion Command Sequence
	Measure Bridge Voltages and Convert to Strain
	Voltage Conversion Command Sequence


	Verifying Correct Bridge Completion (Shunt Cal)
	Built-in Strain Conversion Equations
	Full Bridge Equation (bridge_type=FBEN)
	Half Bridge Equation (bridge_type=HBEN)
	Quarter Bridge Equation (bridge_type=Q120, Q350, or USER)


	Chapter 4 Programming the HP�E1422A for Data Acquisition and Control
	About This Chapter
	Overview of the HP�E1422A Multifunction DAC Module
	Multifunction DAC?
	Flexible Signal Conditioning for Input and Output
	Remote Multiplexing and Signal Conditioning
	Programmable Signal Conditioning and EU Conversion
	Scan List and/or ’C’ Language Control Programming
	Runtime Remote Scan Verification

	Operational Overview
	Acquire Input Values
	Start Algorithms
	Communicating with Algorithms
	Algorithms Control Output Values

	Detailed Instrument Operation Cycle

	Programming Model
	Executing the Programming Model
	Power-on and *RST Default Settings

	Setting up Analog Input and Output Channels
	Configuring Programmable Analog SCP Parameters
	Setting SCP Gains
	Setting Filter Cutoff Frequency
	Setting the HP�E1505 Current Source SCP and HP�E1518 Resistance Measurement SCP
	Setting the HP�E1511 Strain Bridge SCP Excitation Voltage

	Linking Input Channels to EU Conversion
	Linking Voltage Measurements
	Linking Resistance Measurements
	Linking Temperature Measurements
	Linking Strain Measurements
	Custom EU Conversions

	Linking Output Channels to Functions

	Setting up Digital Input and Output Channels
	Setting up Digital Inputs
	Setting Input Polarity
	Setting Input Function

	Setting up Digital Outputs
	Setting Output Polarity
	Setting Output Drive Type
	Setting Output Functions


	Performing Channel Calibration (Important!)
	Calibrationg the HP�E1422A
	Operation and Restrictions
	How to Use *CAL?
	What *CAL? Does
	Re-Execute *CAL? When:

	Calibrating Remote Signal Conditioning Units

	Defining an Analog Input Scan List (ROUT:SEQ:DEF)
	Controlling Scan List Data Destination

	Defining C Language Algorithms
	Global variable definition
	Algorithm definition
	Pre-setting Algorithm Variables

	Defining Data Storage
	Specifying the Data Format
	Selecting the FIFO Mode

	Setting up the Trigger System
	Arm and Trigger Sources
	Selecting the Trigger Source
	Selecting Trigger Timer Arm Source

	Programming the Trigger Timer
	Setting the Trigger Counter
	Sending Trigger Signals to Other Instruments

	INITiating the Module/Starting Scanning and Algorithms
	Starting Scanning and/or Algorithms
	The Operating Sequence

	Reading Running Algorithm Values
	Reading CVT Data
	Reading FIFO Data
	Which FIFO Mode?
	Reading Algorithm Variables Directly

	Modifying Running Algorithm Variables
	Updating the Algorithm Variables and Coefficients
	Enabling and Disabling Algorithms
	Setting Algorithm Execution Frequency

	Example SCPI Command Sequence
	Example VXIplug&play Driver Function Sequence
	Using the Status System
	Enabling Events to be Reported in the Status Byte
	Configuring the Transition Filters
	Configuring the Enable Registers

	Reading the Status Byte
	Clearing the Enable Registers
	The Status Byte Group’s Enable Register
	Reading Status Groups Directly
	Reading Event Registers
	Clearing Event Registers
	Reading Condition Registers


	HP E1422 Background Operation
	Updating the Status System and VXIbus Interrupts
	Creating and Loading Custom EU Conversion Tables
	Standard EU Operation
	Custom EU Operation
	Custom EU Tables
	Custom Thermocouple EU Conversions
	Custom Reference Temperature EU Conversions
	Creating Conversion Tables
	Loading Custom EU Tables
	Summary

	Compensating for System Offsets
	System Wiring Offsets
	Residual Sensor Offsets
	Operation
	Resetting CAL:TARE
	Special Considerations
	Maximum Tare Capability
	Changing Gains or Filters
	Unexpected Channel Offsets or Overloads


	Detecting Open Transducers
	More On Auto Ranging
	Settling Characteristics
	Background
	Checking for Problems
	Fixing the Problem
	Use Amplifier SCPs
	Adding Settling Delay for Specific Channels



	Chapter 5 Creating and Running Algorithms
	About This Chapter
	Overview of the Algorithm Language
	Example Language Usage

	The Algorithm Execution Environment
	The Main Function
	How Your Algorithms Fit In

	Accessing the E1422's Resources
	Accessing I/O Channels
	Defined Input and Output Channels

	Accessing Remote Scan Status Variables
	Runtime Remote Scan Verification
	Runtime Scan States
	Algorithm Language Support
	Operating Model
	Example Scan Verification Algorithms
	Timing Impact

	Defining and Accessing Global Variables
	Determining First Execution (First_loop)
	Initializing Variables
	Sending Data to the CVT and FIFO
	Setting a VXIbus Interrupt
	Determining Your Algorithm's Identity (ALG_NUM)
	Calling User Defined Functions

	Operating Sequence
	Overall Sequence
	A Common Error to Avoid

	Algorithm Execution Order

	Defining Algorithms (ALG:DEF)
	ALG:DEFINE in the Programming Sequence
	ALG:DEFINE's Three Data Formats
	Changing an Algorithm While it's Running
	Defining an Algorithm for Swapping
	How Does it Work?
	Determining an Algorithm's Size


	A Very Simple First Algorithm
	Writing the Algorithm
	Running the Algorithm

	Modifying an Example PID Algorithm
	PIDA with digital On-Off Control
	How the Example PIDA Operates
	Modifying the Example PIDA


	Algorithm to Algorithm Communication
	Communication Using Channel Identifiers
	Implementing Multivariable Control

	Communication Using Global Variables
	Implementing Feed Forward Control


	Non-Control Algorithms
	Process Monitoring Algorithm

	Implementing Setpoint Profiles
	Algorithm Language Reference
	Standard Reserved Keywords
	Special HP�E1422 Reserved Keywords
	Identifiers
	Special Identifiers for Channels
	Special Identifiers for Remote Scan Status
	Operators
	Assignment Operator
	Arithmetic Operators
	Unary Operators
	Comparison Operators
	Logical Operators
	Unary Logical Operator

	Intrinsic Functions and Statements
	Program Flow Control
	Conditional Constructs
	Exiting the Algorithm

	Data Types
	The Static Modifier

	Data Structures
	Bitfield Access
	Declaration Initialization
	Global Variables


	Language Syntax Summary
	Program Structure and Syntax
	Declaring Variables
	Assigning Values
	The Operations Symbols
	The Arithmetic Operators
	Unary Arithmetic Operator
	The Comparison Operators
	The Logical Operators

	Conditional Execution
	Comment Lines
	Overall Program Structure


	Chapter 6 HP�E1422 Command Reference
	Using This Chapter
	Overall Command Index
	Command Fundamentals
	Common Command Format
	SCPI Command Format
	Command Separator
	Abbreviated Commands
	Implied Commands
	Variable Command Syntax
	Parameters

	Linking Commands
	Data Types

	SCPI Command Reference
	ABORt
	Subsystem Syntax
	Comments
	Usage

	ALGorithm
	Subsystem Syntax
	ALGorithm[:EXPLicit]:ARRay
	Parameters
	Comments
	Usage

	ALGorithm[:EXPLicit]:ARRay?
	Parameters
	Comments

	ALGorithm[:EXPLicit]:DEFine
	Parameters
	Comments
	When accepted and Usage

	ALGorithm[:EXPLicit]:SCALar
	Parameters
	Comments
	Usage

	ALGorithm[:EXPLicit]:SCALar?
	Parameters
	Comments

	ALGorithm[:EXPLicit]:SCAN:RATio
	Parameters
	Comments
	Usage

	ALGorithm[:EXPLicit]:SCAN:RATio?
	Comments

	ALGorithm[:EXPLicit]:SIZE?
	Parameters
	Comments

	ALGorithm[:EXPLicit][:STATe]
	Parameters
	Comments
	Usage

	ALGorithm[:EXPLicit][:STATe]?
	Parameters
	Comments

	ALGorithm[:EXPLicit]:TIME?
	Parameters
	Comments

	ALGorithm:FUNCtion:DEFine
	Parameters
	Comments
	Usage

	ALGorithm:OUTPut:DELay
	Parameters
	Comments

	ALGorithm:OUTPut:DELay?
	Comments

	ALGorithm:UPDate[:IMMediate]
	Comments
	Command Sequence

	ALGorithm:UPDate:CHANnel
	Parameters
	Comments
	Command Sequence

	ALGorithm:UPDate:WINDow
	Parameters
	Comments
	Usage

	ALGOrithm:UPDate:WINDow?

	ARM
	Subsystem Syntax
	ARM[:IMMediate]
	Comments
	Usage

	ARM:SOURce
	Parameters
	Comments
	Usage

	ARM:SOURce?
	Usage


	CALibration
	Subsystem Syntax
	CALibration:CONFigure:RESistance
	Comments
	Command Sequence

	CALibration:CONFigure:VOLTage
	Parameters
	Comments
	Command Sequence

	CALibration:REMote?
	Parameters
	Comments

	CALibration:REMote:DATA
	Parameters
	Comments

	CALibration:REMote:DATA?
	Comments

	CALibration:REMote:STORe
	Parameters
	Comments

	CALibration:SETup
	Comments
	Usage

	CALibration:SETup?
	Comments
	Usage

	CALibration:STORe
	Parameters
	Comments
	Usage
	Command Sequence

	CALibration:TARE
	Parameters
	Comments
	Command Sequence

	CALibration:TARE:RESet
	Command Sequence

	CALibration:TARE?
	Command Sequence

	CALibration:VALue:RESistance
	Parameters
	Comments
	Command Sequence

	CALibration:VALue:VOLTage
	Parameters
	Comments
	Command Sequence

	CALibration:ZERO?
	Comments
	Usage


	DIAGnostic
	Subsystem Syntax
	DIAGnostic:CALibration:SETup[:MODE]
	Parameters
	Comments
	Usage

	DIAGnostic:CALibration:SETup[:MODE]?
	Comments

	 DIAGnostic:CALibration:TARE[:OTDetect]:MODE
	Parameters
	Comments
	Usage

	DIAGnostic:CALibration:TARE[:OTDetect]:MODE?
	Comments

	DIAGnostic:CHECksum?
	Comments
	Usage

	DIAGnostic:CONNect
	Parameters
	Comments

	DIAGnostic:CUSTom:MXB
	Parameters
	Comments

	DIAGnostic:CUSTom:MXB
	Parameters
	Comments
	Usage

	DIAGnostic:CUSTom:PIECewise
	Parameters
	Comments
	Usage

	DIAGnostic:CUSTom:REFerence:TEMPerature
	Usage

	DIAGnostic:IEEE
	Parameters
	Comments
	Usage

	DIAGnostic:IEEE?
	Comments

	DIAGnostic:INTerrupt[:LINe]
	Parameters
	Comments
	Usage

	DIAGnostic:INTerrupt[:LINe]?
	Comments
	Usage

	DIAGnostic:OTDetect[:STATe]
	Parameters
	Comments
	Usage

	DIAGnostic:OTDetect[:STATe]?
	Parameters
	Comments
	Usage

	DIAGnostic:QUERy:SCPREAD?
	Parameters
	Comments
	Usage

	DIAGnostic:REMote:USER:DATA
	Parameters
	Comments

	DIAGnostic:REMote:USER:DATA?
	Parameters
	Comments

	DIAGnostic:TEST:REMote:NUMber?
	Parameters
	Comments

	DIAGnostic:TEST:REMote:SELFtest?
	Parameters
	Comments
	Usage

	DIAGnostic:VERSion?
	Comments
	Usage


	FETCh?
	Subsystem Syntax
	Comments
	Use Sequence

	FORMat
	Subsystem Syntax
	FORMat[:DATA]
	Parameters
	Comments
	Usage

	FORMat[:DATA]?
	Comments
	Usage


	INITiate
	Subsystem Syntax
	INITiate[:IMMediate]
	Comments
	Usage


	INPut
	Subsystem Syntax
	INPut:FILTer[:LPASs]:FREQuency
	Parameters
	Comments
	Usage

	INPut:FILTer[:LPASs]:FREQuency?
	Parameters
	Comments
	Usage

	INPut:FILTer[:LPASs][:STATe]
	Parameters
	Comments
	Usage

	INPut:FILTer[:LPASs][:STATe]?
	Parameters
	Comments
	Usage

	INPut:GAIN
	Parameters
	Comments
	Usage

	INPut:GAIN?
	Parameters
	Comments
	Usage

	INPut:LOW
	Parameters
	Comments
	Usage

	INPut:LOW?
	Parameters
	Comments
	Usage

	INPut:POLarity
	Parameters
	Comments
	Usage

	INPut:POLarity?
	Parameters
	Comments


	MEASure
	Subsystem Syntax
	MEASure:VOLTage:EXCitation?
	Parameters
	Comments
	Usage

	MEASure:VOLTage:UNSTrained?
	Parameters
	Comments
	Usage


	MEMory
	Subsystem Syntax
	Use Sequence
	MEMory:VME:ADDRess
	Parameters
	Comments
	Usage

	MEMory:VME:ADDRess?
	Comments
	Usage

	MEMory:VME:SIZE
	Parameters
	Comments
	Usage

	MEMory:VME:SIZE?
	Comments
	Usage

	MEMory:VME:STATe
	Parameters
	Comments
	Usage

	MEMory:VME:STATe?
	Comments
	Usage


	OUTPut
	Subsystem Syntax
	OUTPut:CURRent:AMPLitude
	Parameters
	Comments
	Usage

	OUTPut:CURRent:AMPLitude?
	Parameters
	Comments
	Usage

	OUTPut:CURRent[:STATe]
	Parameters
	Comments
	Usage

	OUTPut:CURRent[:STATe]?
	Parameters
	Comments
	Usage

	OUTPut:POLarity
	Parameters
	Comments
	Usage

	OUTPut:POLarity?
	Parameters
	Comments

	OUTPut:SHUNt
	Parameters
	Comments
	Usage

	OUTPut:SHUNt?
	Parameters
	Comments
	Usage

	OUTPut:SHUNt:SOURce
	Parameters
	Comments
	Usage

	OUTPut:SHUNt:SOURce?
	Parameters
	Comments
	Usage

	OUTPut:TTLTrg:SOURce
	Parameters
	Comments
	Usage

	OUTPut:TTLTrg:SOURce?
	Comments
	Usage

	OUTPut:TTLTrg<n>[:STATe]
	Parameters
	Comments
	Usage

	OUTPut:TTLTrg<n>[:STATe]?
	Comments
	Usage

	OUTPut:TYPE
	Parameters
	Comments
	Usage

	OUTPut:TYPE?
	Parameters
	Comments

	OUTPut:VOLTage:AMPLitude
	Parameters
	Comments
	Usage

	OUTPut:VOLTage:AMPLitude?
	Comments
	Usage


	ROUTe
	Subsystem Syntax
	ROUTe:SEQuence:DEFine
	Parameters
	Comments
	Usage

	ROUTe:SEQuence:DEFine?
	Parameters
	Comments
	Usage

	ROUTe:SEQuence:POINts?
	Parameters
	Comments
	Usage


	SAMPle
	Subsystem Syntax
	SAMPle:TIMer
	Parameters
	Comments
	Usage

	SAMPle:TIMer?
	Comments
	Usage


	[SENSe]
	Subsystem Syntax
	[SENSe:]CHANnel:SETTling
	Parameters
	Comments
	Usage

	[SENSe:]CHANnel:SETTling?
	Parameters
	Comments

	[SENSe:]DATA:CVTable?
	Parameters
	Comments
	Usage

	[SENSe:]DATA:CVTable:RESet
	Comments
	Usage

	[SENSe:]DATA:FIFO[:ALL]?
	Comments
	Usage
	Command Sequence

	[SENSe:]DATA:FIFO:COUNt?
	Comments
	Usage

	[SENSe:]DATA:FIFO:COUNt:HALF?
	Comments
	Command Sequence

	[SENSe:]DATA:FIFO:HALF?
	Comments
	Command Sequence

	[SENSe:]DATA:FIFO:MODE
	Parameters
	Comments
	Usage

	[SENSe:]DATA:FIFO:MODE?
	Comments
	Usage

	[SENSe:]DATA:FIFO:PART?
	Parameters
	Comments
	Usage

	[SENSe:]DATA:FIFO:RESet
	Comments
	Usage

	[SENSe:]FREQuency:APERture
	Parameters
	Comments
	Usage

	[SENSe:]FREQuency:APERture?
	Parameters
	Comments

	[SENSe:]FUNCtion:CONDition
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:CUSTom
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:CUSTom:REFerence
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:CUSTom:TCouple
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:FREQuency
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:RESistance
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:STRain:FBENding
	[SENSe:]FUNCtion:STRain:FBPoisson
	[SENSe:]FUNCtion:STRain:FPOisson
	[SENSe:]FUNCtion:STRain:HBENding
	[SENSe:]FUNCtion:STRain:HPOisson
	[SENSe:]FUNCtion:STRain[:QUARter]
	[SENSe:]FUNCtion:STRain:Q120
	[SENSe:]FUNCtion:STRain:Q350
	[SENSe:]FUNCtion:STRain:USER
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:TEMPerature
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:TOTalize
	Parameters
	Comments
	Usage

	[SENSe:]FUNCtion:VOLTage[:DC]
	Parameters
	Comments
	Usage

	[SENSe:]REFerence
	Parameters
	Comments
	Usage

	[SENSe:]REFerence:CHANnels
	Parameters
	Comments
	Usage

	[SENSe:]REFerence:TEMPerature
	Parameters
	Comments
	Usage

	[SENSe:]STRain:BRIDge[:TYPE]
	Parameters
	Comments
	Usage

	[SENSe:]STRain:BRIDge:[TYPE]?
	Parameters
	Comments
	Usage

	[SENSe:]STRain:CONNect
	Parameters
	Comments
	Usage

	[SENSe:]STRain:CONNect?
	Parameters
	Comments
	Usage

	[SENSe:]STRain:EXCitation
	Parameters
	Comments
	Usage

	[SENSe:]STRain:EXCitation?
	Parameters
	Comments
	Usage

	[SENSe:]STRain:EXCitation:STATe
	Parameters
	Comments
	Usage

	[SENSe:]STRain:EXCitation:STATe?
	Parameters
	Comments
	Usage

	[SENSe:]STRain:GFACtor
	Parameters
	Comments
	Usage

	[SENSe:]STRain:GFACtor?
	Parameters
	Comments
	Usage

	[SENSe:]STRain:POISson
	Parameters
	Comments
	Usage

	[SENSe:]STRain:POISson?
	Parameters
	Comments
	Usage

	[SENSe:]STRain:UNSTrained
	Parameters
	Comments
	Usage

	[SENSe:]STRain:UNSTrained?
	Parameters
	Comments
	Usage

	[SENSe:]TOTalize:RESet:MODE
	Parameters
	Comments
	Usage

	[SENSe:]TOTalize:RESet:MODE?
	Parameters
	Comments


	SOURce
	Subsystem Syntax
	SOURce:FM[:STATe]
	Parameters
	Comments
	Usage

	SOURce:FM:STATe?
	Parameters
	Comments

	SOURce:FUNCtion[:SHAPe]:CONDition
	Parameters
	Comments

	SOURce:FUNCtion[:SHAPe]:PULSe
	Parameters
	Comments

	SOURce:FUNCtion[:SHAPe]:SQUare
	Parameters
	Comments
	Usage

	SOURce:PULM[:STATe]
	Parameters
	Comments

	SOURce:PULM:STATe?
	Parameters
	Comments

	SOURce:PULSe:PERiod
	Parameters
	Comments
	Usage

	SOURce:PULSe:PERiod?
	Parameters
	Comments

	SOURce:PULSe:WIDTh
	Parameters
	Comments
	Usage

	SOURce:PULSe:WIDTh?
	Parameters
	Comments

	SOURce:VOLTage[:AMPLitude]
	Parameters
	Comments
	Usage


	STATus
	Initializing the Status System
	Subsystem Syntax
	Weighted Bit Values

	The Operation Status Group
	STATus:OPERation:CONDition?
	Comments
	Usage

	STATus:OPERation:ENABle
	Parameters
	Comments
	Usage

	STATus:OPERation:ENABle?
	Comments
	Usage

	STATus:OPERation[:EVENt]?
	Comments
	Usage

	STATus:OPERation:NTRansition
	Parameters
	Comments
	Usage

	STATus:OPERation:NTRansition?
	Comments
	Usage

	STATus:OPERation:PTRansition
	Parameters
	Comments
	Usage

	STATus:OPERation:PTRansition?
	Comments
	Usage

	STATus:PRESet
	Comments
	Usage


	The Questionable Data Group
	STATus:QUEStionable:CONDition?
	Comments
	Usage

	STATus:QUEStionable:ENABle
	Parameters
	Comments
	Usage

	STATus:QUEStionable:ENABle?
	Comments
	Usage

	STATus:QUEStionable[:EVENt]?
	Comments
	Usage

	STATus:QUEStionable:NTRansition
	Parameters
	Comments
	Usage

	STATus:QUEStionable:NTRansition?
	Comments
	Usage

	STATus:QUEStionable:PTRansition
	Parameters
	Comments
	Usage

	STATus:QUEStionable:PTRansition?
	Comments
	Usage


	SYSTem
	Subsystem Syntax
	SYSTem:CTYPe?
	Parameters
	Comments
	Usage

	SYSTem:ERRor?
	Comments
	Usage

	SYSTem:VERSion?
	Comments
	Usage


	TRIGger
	Event Sequence
	Subsystem Syntax
	TRIGger:COUNt
	Parameters
	Comments
	Usage

	TRIGger:COUNt?
	Comments
	Usage

	TRIGger[:IMMediate]
	Comments
	Usage

	TRIGger:SOURce
	Parameters
	Comments
	Usage

	TRIGger:SOURce?
	Usage

	TRIGger:TIMer[:PERiod]
	Parameters
	Comments
	Usage

	TRIGger:TIMer[:PERiod]?
	Comments
	Usage


	IEEE-488.2 Common�Command�Reference
	*CAL?
	*CLS
	*DMC
	*EMC
	*EMC?
	*ESE
	*ESE?
	*ESR?
	*GMC?
	*IDN?
	*LMC?
	*OPC
	*OPC?
	*PMC
	*RMC
	*RST
	*SRE
	*SRE?
	*STB?
	*TRG
	*TST?
	Comments

	*WAI

	Command Quick Reference

	Appendix A Specifications
	HP�E1422 Specifications
	HP E1529A Specifications

	Appendix B Error Messages
	Appendix C Glossary
	Appendix D Wiring and Noise Reduction Methods
	Separating Digital and Analog SCP Signals
	Recommended Wiring and Noise Reduction Techniques
	Wiring Checklist
	HP E1422 Guard Connections
	Common Mode Voltage Limits
	When to Make Shield Connections

	Noise Due to Inadequate Card Grounding
	HP E1422 Noise Rejection
	Normal Mode Noise (Enm)
	Common Mode Noise (Ecm)
	Keeping Common Mode Noise out of the Amplifier


	Appendix E Generating User Defined Functions
	Introduction
	Haversine Example.
	Limitations

	Appendix F Example PID Algorithm Listings
	PIDA Algorithm
	PIDB Algorithm
	Clipping Limits
	Alarm Limits
	Manual Control
	Status Variable
	History Mode

	PIDC Algorithm

	Index

